麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 22 Integral Equation Methods

Numerical Methods for PDEs Integral Equation Methods, Lecture 3 Discretization Convergence Theory Notes by Suvranu De and J. White Apri30,2003

Outline Integral Equation Methods Reminder about galerkin and Collocation Example of convergence issues in 1D First and second kind integral equations Develop some intuition about the difficulties Convergence for second kind equations Consistency and stability issues Nystrom Methods High order convergence SMA+HPC⊙2003M Discretization Convergence Theory 1

Integral Basis Function Approach Equation Basics Basic ldea Integral equation: y(a)=/G(, a)o(a')dS Represent on(a)=Li-1 oni Pila Basis functions EXample Basis Represent circle with straight lines Assume o is constant along each line SMA+HPC⊙2003M Discretization Convergence Theory 2

Integral Basis Function Approach Equation Basics Piecewise Constant Straight Sections Example 1)Pick a set of n Points on the r surface 2)Define a new surtace by connecting points with n lines 3)Define P(x)=l if x is on line I otherwise, (x)=0 平(x)=jGx)∑,(x)S=∑on;∫G(x,x)S approx How do we determine the om 's? SMA+HPC⊙2003M Discretization Convergence Theory 3

Integral Basis Function Approach Equation Basics Residual Definition and Minimization R(ax)≡y() approx G(a,)∑on(m)ds surface We will pick the oni's to make R(a) small General approach: Pick a set of test functions p1,..., n, and force R() to be orthogonal to the set pile)r(a)ds=0 for all i SMA+HPC⊙2003M Discretization Convergence Theory 4

Integral Basis Function Approach Equation Basics Residual Minimization Using Test Functions J()(a)d.=0→ pi(a)y(a)ds- approx i(e)G(c, c)on;9i(c,)dS'dS=0 surface We will generate different methods by choosing theφ,……,φn Collocation i(a)=8(a-t )(point matching Galerkin Method il(a)=pi(a)(basis = test Weighted Residual Method pi(a)=1 if i(a)+0 (averages SMA+HPC⊙2003M Discretization Convergence Theory 5

Integral Basis Function Approach Equation Basics Collocation Collocation: i(a)=8(a-3t )(point matching ∫6(m-at)R(a)ds=R(t;)=0→ 2=On/p()()d=更( surtace A 1,1 1 y(ati) A A 77 y(atn) SMA+HPC⊙2003M Discretization Convergence Theory 6

Integral Basis Function Approach Equation Basics Galerkin Galerkin: i(a)=i(a)(test=basis) 9((41甲(4+j((1)2吗280 Al 721 b1 Anl .72 If G(a, a')=G(a, a)then Ai, j= Aj, i= A is symmetric SMA+HPC⊙2003M Discretization Convergence Theory 7

Convergence Example Problems Analysis 1D First Kind Equation v(a)=-12-(dsm∈[-1,1 e potential is given The density must be computed r=x-x o(x)is unknown SMA+HPC⊙2003M Discretization Convergence Theory 8

Convergence Example Problems Analysis Collocation Discretization of 1D Equation 业(x)=/-11-l(c)dsa∈[-1,1 Centroid Collocated Piecewise Constant Scheme Ro 业(xc2)=∑=10 j alds SMA+HPC⊙2003M Discretization Convergence Theory 9
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 21 notes.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 22 notes.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 21 Notes by Suvranu De and J. White.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 20 toupload.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 18 FEM for the poisson problem.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 20 Numerical Methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 16 Discretization of the Poisson Problem in RI: Theory and Implementation.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 18 FEM for the Poisson Problem.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 16 Discret ization of the poisson.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 15 Discretization of the Poisson.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 13 Finite element methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 15 Discretization of the poisson.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 12 Finite volume discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 12 Numerical Schemes for Scalar.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 13 Finite Element Methods for Elliptic Problems.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 11 Hyperbolic Equations Scalar.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 11 notes.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 8 Finite Difference Discretization of Hyperbolic Equations.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 8 Finite difference discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 7 Iterative Method.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 24 Outline Laplace Problems.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 25 Numerical Methods for PDEs.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 24 notes.pdf
- 麻省理工学院:偏微分方程式数字方法(英文版)_lec26.pdf
- 《数据通信网络》(英文版)Lectures5_6 Introduction to Queueing Theory.pdf
- 《数据通信网络》(英文版)Lecture 1 Introduction.pdf
- 《数据通信网络》(英文版)Lectures3_4 The Data Link Layer: ARQ Protocols.pdf
- 《数据通信网络》(英文版)Lecture 2 The Data Link Layer: Framing and Error Detection.pdf
- 《数据通信网络》(英文版)Lecture 7 Burke’s Theorem and Networks of Queues.pdf
- 《数据通信网络》(英文版)Lectures13_14 Packet Multiple Access: The Aloha protocol.pdf
- 《数据通信网络》(英文版)Lectures15_16 Local Area Networks.pdf
- 《数据通信网络》(英文版)Lectures10_11 Reservations Systems M/G/1 queues with Priority.pdf
- 《数据通信网络》(英文版)Lectures8_9 M/G/1 Queues.pdf
- 《数据通信网络》(英文版)Lectures17_18 Fast packet switching.pdf
- 《数据通信网络》(英文版)Lectures22_23 Flow and congestion control.pdf
- 《数据通信网络》(英文版)Lecture19 Lecture 19 Broadcast routing.pdf
- 《数据通信网络》(英文版)Lecture 21 Optimal Routing.pdf
- 《数据通信网络》(英文版)Lecture 20 Routing in Data Networks.pdf
- 《数据通信网络》(英文版)Lectures24_25 Higher Layer Protocols: TCP/IP and ATM.pdf
- 《航空器系统工程学》(英文版)Aircraft Systems Engineering.pdf