中国高校课件下载中心 》 教学资源 》 大学文库

麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 18 FEM for the Poisson Problem

文档信息
资源类别:文库
文档格式:PDF
文档页数:52
文件大小:894.49KB
团购合买:点击进入团购
内容简介
Formulations Model problem Strong Formulation Find u such that Vu=f in n2 a =0 on I for a polygonal domain
刷新页面文档预览

FEM for the Poisson Problem in R2 Apri14&16,2003

Formulations Model problem Strong Formulation Find u such that Vu=f in n2 a =0 on I for a polygonal domain N1 SMA-HPO⊙1999M FEM Poisson in R 1

Formulations Model problem Minimization/Weak Formulations Find u= arg min da(w, w)-e(w); ∈X J(w) or find∈ X such that a(u,0)=(),v∈X SMA-HPO⊙1999M FEM Poisson in R 2

Formulations Model problem Minimization/Weak Formulations where X={v∈H(s)|vr=0}=H(9), C(0U。0 Vw. VU dA SPD 0 f vdA bounded SMA-HPO⊙1999M FEM Poisson in R 3

Regularity Model problem In general, ullH1(o)< ClellH-1(0) If f EL (S)and n is convex, ur2()≤Cf(g) N2 important for convergence rate SMA-HPO⊙1999M FEM Poisson in R 4

Finite Element Triangulation Discretization ∪Tn N3 Th∈Th TR: elements k=1 K ai:nodes, interior 1 n boundary SMA-HPO⊙1999M FEM Poisson in R 5

Finite Element Approximation Discretization Space(Linear Elements) Xn={∈x|vn∈P1(T),VTn∈Th} 0 U∈C0() P1(Th):0n=c0+、C+、cyy,c,cmyy∈ SMA-HPO⊙1999M FEM Poisson in R 6

Finite Element Approximation Discretization Basis(Nodal) h=span{1,…,9n} 9;∈Xh,(m;)=6,1≤i,j≤m Support of p ppi nonzero SMA-HPO⊙1999M FEM Poisson in R2 7

Finite Element Approximation Discretization Basis(Nodal) Nodal interpretation: v E Xh 0=∑ vi pila)i 0(a )=∑091(m)=∑016n→=0(m =1 SMA-HPO⊙1999M FEM Poisson in R 8

Finite Element “ Projection Discretization Rayleigh-Ritz or Galerkin Rayleigh-Ritz Wh= arg min ba(o, w)-e(o) D∈Xh J(w) Galerkin: Uh E X, satisfies a(uh,v)=e(v),Vv∈Xh SMA-HPO⊙1999M FEM Poisson in R 9

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档