山东大学:《物理化学》课程教学资源(讲义资料)8.8.2 Dynamic Properties of colloids

8.8.2 Dynamic Properties of colloids Out-class reading Levine pp 402-405 13.6 Colloids
8.8.2 Dynamic Properties of colloids Out-class reading: Levine pp. 402-405 13.6 Colloids

8.8.2 Dynamic properties of colloids (1) Brownian motion Robert Brown (1773-1858) Vitality? In 1827, the botanist Robert Brown published a study "a brief account on microscopic observation on the particles contained in the pollen of plant. He reported an irregular motion of pollen grains
(1) Brownian motion In 1827, the botanist Robert Brown published a study “A brief account on microscopic observation on the particles contained in the pollen of plant”. He reported an irregular motion of pollen grains. Vitality? 8.8.2 Dynamic properties of colloids

8.8.2 Dynamic properties of colloids (1)Brownian motion Wiener suggested that the brownian In 1903, Zsigmondy studied Brownian motion arose from molecular motion motion using ultramicroscopy and found T F∝ independent of the chemical nature of the Unbalanced particles collision from medum For particle with diameter> 5 um,no molecules Brownian motion can be observed Although motion of molecules can not be observed directly, the Brownian motion gave indirect evidence for it
In 1903, Zsigmondy studied Brownian motion using ultramicroscopy and found: For particle with diameter > 5 m, no Brownian motion can be observed. Wiener suggested that the Brownian motion arose from molecular motion. Unbalanced collision from medium molecules Although motion of molecules can not be observed directly, the Brownian motion gave indirect evidence for it. (1) Brownian motion 8.8.2 Dynamic properties of colloids r T 1 r independent of the chemical nature of the particles

8.8.2 Dynamic properties of colloids (2) Diffusion and osmotic pressure 1905 Einstein proposed that D kRT rT f=frictional coefficient For spheric colloidal particles, XX Concentration gradient f= tnr Stokes'law Fickian first law for diffusion RT Einstein first law for D L6丌 r diffu uSIon D
(2) Diffusion and osmotic pressure x Fickian first law for diffusion Concentration gradient = dn dc D dt dx = − 1905 Einstein proposed that: Lf RT f k T D = = B For spheric colloidal particles, f = 6r Stokes’ law f = frictional coefficient L r RT D 6 1 = Einstein first law for diffusion 8.8.2 Dynamic properties of colloids

8.8.2 Dynamic properties of colloids (2)Diffusion and osmotic pressure Atoms and molecules had long been theorized as the In 1908, Perrin found that, for gamboge constituents of matter. Albert Einstein published a sol with diameter of 0.212 um, n=0.0011 paper in 1905 that explained in precise detail how the motion that brown had observed was a result of the Pa.s. After 30s of diffusion the mean pollen being moved by individual water molecules diffusion distance is 7.09 cm s-I making one of his first big contributions to science This explanation of Brownian motion served as D、RT1 convincing evidence that atoms and molecules exist L tnr and moves constantly. which was further verified experimentally by Jean Perrin in 1908 He calculated Avgadro's constant from this equation Because of the Brownian motion osmotic pressure also originates L=6.5×10 Which confirms the validity of Einstein- RT Brownian motion equation
In 1908, Perrin found that, for gamboge sol with diameter of 0.212 m, = 0.0011 Pas. After 30 s of diffusion, the mean diffusion distance is 7.09 cm s -1 . L = 6.5 1023 Because of the Brownian motion, osmotic pressure also originates RT V n = Which confirms the validity of EinsteinBrownian motion equation (2) Diffusion and osmotic pressure 8.8.2 Dynamic properties of colloids Atoms and molecules had long been theorized as the constituents of matter. Albert Einstein published a paper in 1905 that explained in precise detail how the motion that Brown had observed was a result of the pollen being moved by individual water molecules, making one of his first big contributions to science. This explanation of Brownian motion served as convincing evidence that atoms and molecules exist and moves constantly, which was further verified experimentally by Jean Perrin in 1908. L r RT D 6 1 = He calculated Avgadro’s constant from this equation

8.8.2 Dynamic properties of colloids (2)Diffusion and osmotic pressure 2Dt C E D r RT t D Z2x B 12x L nr L rnr Einstein-Brownian motion equation Xc x(C1-C2) The above equation suggests that if x could be determined using ultramicroscope, the diameter of the colloidal particle can be calculated. The dc=D C mean molar weight of colloidal particle can also dx x determined according to m
F A B C D c1 c2 E ½ x ½ x x c c dx dc ( ) 1 − 2 = = − = − ( ) 2 1 2 1 2 1 n xc1 xc2 x c1 c2 x c c D dx dc D ( ) 1 − 2 = ( ) 2 ( ) 1 1 2 1 2 t x c c x c c D = − − − x = 2Dt r t L RT x 3 = Einstein-Brownian motion equation The above equation suggests that if x could be determined using ultramicroscope, the diameter of the colloidal particle can be calculated. The mean molar weight of colloidal particle can also be determined according to: M r L 3 3 4 = L r RT D 6 1 = (2) Diffusion and osmotic pressure 8.8.2 Dynamic properties of colloids

8.8.2 Dynamic properties of colloids (3 )Sedimentation and sedimentation equilibrium Mean concentration:(c-12 dc D)sedimentation equilibrium The number of colloidal particles diffusion Buoyant (c-)AchL 2 Di Diffusion force 丌=CRT Gravitational dn= rTdc orce b h The diffusion force exerting on each colloidal particle rTdc dc c-)AdhL cdhL
(3) Sedimentation and sedimentation equilibrium diffusion 1) sedimentation equilibrium Gravitational force Buoyant force a a’ b b’ c dh Mean concentration: (c - ½ dc) The number of colloidal particles: AdhL dc c ) 2 ( − Diffusion force: = cRT d = RTdc The diffusion force exerting on each colloidal particle cdhL RTdc AdhL dc c Ad f d = − = ) 2 ( 8.8.2 Dynamic properties of colloids

8.8.2 Dynamic properties of colloids (3 )Sedimentation and sedimentation equilibrium Heights needed for half-change of concentration he gravitational force exerting on each particle: systems Particle diameter △h 4 r/nm (0-P0)g 0.27 skI Highly dispersed 1.86 2.15m Au SOl Micro-dispersed 8.53 2.5cm InC LI Au sol (p-p°)(h2-h1)g RT Coarsely dispersed 186 0.2m uSo」 Altitude distribution Brownian motion is one of the important reasons for the stability of colloidal system
The gravitational force exerting on each particle: f g r ( )g 3 4 0 3 = − g d f = f h h g RT LV c c ln ( )( ) 2 1 0 2 1 = − − Altitude distribution systems Particle diameter r / nm h O2 0.27 5 km Highly dispersed Au sol 1.86 2.15 m Micro-dispersed Au sol 8.53 2.5 cm Coarsely dispersed Au sol 186 0.2 m Heights needed for half-change of concentration Brownian motion is one of the important reasons for the stability of colloidal system. (3) Sedimentation and sedimentation equilibrium 8.8.2 Dynamic properties of colloids

8.8.2 Dynamic properties of colloids (3 )Sedimentation and sedimentation equilibrium 2r2( )g 7 2) Velocity of sedimentation Gravitational force exerting on a particle Times needed for particles to settle 1 cm 4 radius time 8=37(- po)8 10 um 5.9s When the particle sediments at velocity v μm 98s the resistance force is 100nm 16h f:= fv= 6tn 10 nm 68d When the particle sediments at a constant velocity 1 nm 19y g For particles with radius less than 100 nm sedimentation is impossible due to convection and vibration of the medium
2) Velocity of sedimentation Gravitational force exerting on a particle: f g r ( )g 3 4 0 3 = − When the particle sediments at velocity v, the resistance force is: f fv rv F = = 6 When the particle sediments at a constant velocity F g f = f r g v ( ) 9 2 2 0 − = radius time 10 m 5.9 s 1 m 9.8 s 100 nm 16 h 10 nm 68 d 1 nm 19 y Times needed for particles to settle 1 cm For particles with radius less than 100 nm, sedimentation is impossible due to convection and vibration of the medium. (3) Sedimentation and sedimentation equilibrium 8.8.2 Dynamic properties of colloids

8.8.2 Dynamic properties of colloids (4)ultracentrifuge: Centrifuge acceleration Sedimentation for colloids is usually a=o x o-xM very slow process. The use of a centrifuge C can greatly speed up the process by F=o2xM increasing the force on the particle far above that due to gravitation alone xMo=MvPpoox 1924, Svedberg invented ultracentrifuge the r.p. m of which can attain 100 160 For sedimentation with constant velocity thousand and produce accelerations of the order of 106g dc Mox(1-vpo)dx RT
(4) ultracentrifuge: Sedimentation for colloids is usually a very slow process. The use of a centrifuge can greatly speed up the process by increasing the force on the particle far above that due to gravitation alone. 1924, Svedberg invented ultracentrifuge, the r.p.m of which can attain 100 ~ 160 thousand and produce accelerations of the order of 106 g. Centrifuge acceleration: a x 2 = r 2 Fc = xM r 2 Fc = xM F xM M v x b 2 0 r 0 2 = = dt dx F Lf d = For sedimentation with constant velocity v dx RT M x c dc (1 )0 2 r = − 8.8.2 Dynamic properties of colloids
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 山东大学:《物理化学》课程教学资源(讲义资料)8.9 coagulation and flocculation-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020-2021 Third Quarter-exam paper-with answers.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.11 solution of macromolecules.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020-2021 Final Exam-B with answers.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)物理化学(2)教学日历.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)物理化学(2)教学大纲.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)高等学校化学类专业物理化学相关教学内容与教学要求建议(2020版).pdf
- 安庆师范学院化学化工学院:《分析化学》精品课程建设PPT教案_第十章 吸光光度法 Absorption photometry(开小明).ppt
- 河南大学基础医学院:《生物化学》PPT电子教案_第九章 物质代谢的联系与调节 Metabolic Interrelationships and Regulation.ppt
- 安庆师范学院化学化工学院:《化学教学论》PPT多媒体课件_第9章 信息技术与化学课程整合.ppt
- 皖西学院:《物理化学》课程电子教案(PPT课件讲稿)第五章 相平衡.ppt
- 中山大学:《大学化学》课程电子教案_第7章 配合物与配位平衡乔正平.pptx
- 景德镇陶瓷学院:《基础化学实验》PPT电子教案_绪论.ppt
- 《物理化学》课程教学资源(PPT电子教案)第二章 溶液(solution).ppt
- 大连理工大学:《分析化学 Analytical Chemistry》课程电子教案(PPT教学课件)第四章 酸碱滴定法 Acid-Base Titration.ppt
- 大连理工大学:《分析化学 Analytical Chemistry》课程电子教案(PPT教学课件)第十三章 分析化学中的分离与富集方法.ppt
- 西安建筑科技大学:湿法冶金原理——水溶液电解质电解.ppt
- 华南农业大学应用化学专业:《无机化学》PPT课件_第八章 卤素 Halogen(刘晓瑭).ppt
- 西安建筑科技大学:第十章 熔盐电解(PPT课件).ppt
- 南开大学环境科学与工程学院:有机污染物的电化学氧化 Electrochemical Oxidation of organic pollutants(鲁金凤).ppt
- 山东大学:《物理化学》课程教学资源(讲义资料)8.8 electric properties of colloid.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.6 Dispersion system-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.10 Preparation and purification of colloids-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.8.1 Optical property of colloids.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Homework-8.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.4 Surface adsorption of solution.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Group work-5.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.5 Surfactants, their properties and Applications(active learning).pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Homework-7.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.2 surface phenomenon of liquid-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.1 Surface tension.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Second Quater for Electrochemistry-with answer.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Second Quater for Electrochemistry-with answer.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)化学学科思维概述 Academic thinking.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.12-14 Applied Electrochemistry-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)化学学科思维概述.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.1 Surface tension.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.4 adsorption at gas / solid interface.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)I2 /I-体系湿法冶金.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)the progress of lithium metallurgy.pdf