《理论化学导论》(英文版)Solutions

Solutions First determine the eigenvalue 1-2 (-1-)(2-)-22=0 2+λ-2λ+12-4=0 (-3)X+2)=0 Next, determine the eigenvectors. First the eigenvector associated with eigenvalue -2 12‖Cr 22LC21 C11+2C21=-2C11 C11=-2C21(Note: The second row offers no new information, e.g. 2C11 2C21=-2C21) C112+C212= 1(from normalization (-2C212+C212=1 C212=0.2 C21=V0. 2, and therefore C1=-2vo
1 Solutions 1. a. First determine the eigenvalues: det ë ê é û ú -1 - l 2 ù 2 2 - l = 0 (-1 - l)(2 - l) - 22 = 0 -2 + l - 2l + l2 - 4 = 0 l2 - l - 6 = 0 (l - 3)(l + 2) = 0 l = 3 or l = -2. Next, determine the eigenvectors. First, the eigenvector associated with eigenvalue -2: ë ê é û ú ù -1 2 2 2 ë ê é û ú C ù 11 C21 = -2 ë ê é û ú C ù 11 C21 -C11 + 2C21 = -2C11 C11 = -2C21 (Note: The second row offers no new information, e.g. 2C11 + 2C21 = -2C21) C112 + C212 = 1 (from normalization) (-2C21) 2 + C212 = 1 4C212 + C212 = 1 5C212 = 1 C212 = 0.2 C21 = 0.2 , and therefore C11 = -2 0.2

For the eigenvector associated with eigenvalue 3 12 12 22儿C C 12 4C12=-2C C12=0.5C22(again the second row offers no new information) C122+C222=1(from normalization) 0.25C22+C 1.25C C22=0.8 C22=V0.8=2v0.2, and therefore C12=v0.2 Therefore the eigenvector matrix becomes 202V02 √022V02 b first determine th -2-入0 0 2-λ From la. the solutions then become -2 -2 and 3. Next. determine the eigenvectors First the eigenvector associated with eigenvalue 3(the third root)
2 For the eigenvector associated with eigenvalue 3: ë ê é û ú ù -1 2 2 2 ë ê é û ú C ù 12 C22 = 3 ë ê é û ú C ù 12 C22 -C12 + 2C22 = 3C12 -4C12 = -2C22 C12 = 0.5C22 (again the second row offers no new information) C122 + C222 = 1 (from normalization) (0.5C22) 2 + C222 = 1 0.25C222 + C222 = 1 1.25C222 = 1 C222 = 0.8 C22 = 0.8 = 2 0.2 , and therefore C12 = 0.2 . Therefore the eigenvector matrix becomes: ë ê é û ú ù -2 0.2 0.2 0.2 2 0.2 b. First determine the eigenvalues: det ë ê ê é û ú ú ù -2 - l 0 0 0 -1 - l 2 0 2 2 - l = 0 det [ ] -2 - l det ë ê é û ú -1 - l 2 ù 2 2 - l = 0 From 1a, the solutions then become -2, -2, and 3. Next, determine the eigenvectors. First the eigenvector associated with eigenvalue 3 (the third root):

200 II C11 0-12|C C 31 C 2 C13=3C13(row one) C13=0 C23+ 2C33=3C23(row two) 33=2C23(again the third row offers no new information) C132+C232+C332=1(from normalization) 5C232=1 C23=v0. 2, and therefore C33=2v0.2 Next, find the pair of eigenvectors associated with the degenerate eigenvalue of-2. First, root one eigenvector one 2C11=-2Cl1(no new information from row one) 1+2C31=-2C21( row two) C21=-2C31(again the third row offers no new information) 11+ C212+ C312=1(from normalization C1 C C11 5C312 Ith three unknowns. Second root two eigenvector two
3 ë ê ê é û ú ú ù -2 0 0 0 -1 2 0 2 2 ë ê ê é û ú ú C ù 11 C21 C31 = 3 ë ê ê é û ú ú C ù 11 C21 C31 -2 C13 = 3C13 (row one) C13 = 0 -C23 + 2C33 = 3C23 (row two) 2C33 = 4C23 C33 = 2C23 (again the third row offers no new information) C132 + C232 + C332 = 1 (from normalization) 0 + C232 + (2C23) 2 = 1 5C232 = 1 C23 = 0.2 , and therefore C33 = 2 0.2 . Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2. First, root one eigenvector one: -2C11 = -2C11 (no new information from row one) -C21 + 2C31 = -2C21 (row two) C21 = -2C31 (again the third row offers no new information) C112 + C212 + C312 = 1 (from normalization) C112 + (-2C31) 2 + C312 = 1 C112 + 5C312 = 1 C11 = 1 - 5C312 (Note: There are now two equations with three unknowns.) Second, root two eigenvector two:

2C12=-2C12(no new information from row one) C22+ 2C32=-2C22(row two) C22=-2C32(again the third row offers no new information) C122+C222+C322=1(from normalization) C12+(-2C32)2+ C122+5C 12=(1-5C32)(Note: again, two equations in three unknowns C11C12+ C21 C22+ C3 C32=0( from orthogonalization) Now there are five equations with six unknowns Arbitrarily choose C11=0 (whenever there are degenerate eigenvalues, there are not unique eigenvectors because he degenerate eigenvectors span a 2-or more-dimensional space, not two unique directions. One al ways is then forced to choose one of the coefficients and then determine all the rest; different choices lead to different final eigenvectors but to identical spaces spanned by these eigenvectors) C11=0=y1-5C C31=V02 C21=-2V0.2 C1l C12+ C21 C22+C31 C32=0(from orthogonalization) 0+-2V0.2(-2C32)+V0.2C32=0 5C32=0
4 -2C12 = -2C12 (no new information from row one) -C22 + 2C32 = -2C22 (row two) C22 = -2C32 (again the third row offers no new information) C122 + C222 + C322 = 1 (from normalization) C122 + (-2C32) 2 + C322 = 1 C122 + 5C322 = 1 C12 = (1- 5C32 2 ) 1/2 (Note: again, two equations in three unknowns) C11C12 + C21C22 + C31C32 = 0 (from orthogonalization) Now there are five equations with six unknowns. Arbitrarily choose C11 = 0 (whenever there are degenerate eigenvalues, there are not unique eigenvectors because the degenerate eigenvectors span a 2- or more- dimensional space, not two unique directions. One always is then forced to choose one of the coefficients and then determine all the rest; different choices lead to different final eigenvectors but to identical spaces spanned by these eigenvectors). C11 = 0 = 1 - 5C312 5C312 = 1 C31 = 0.2 C21 = -2 0.2 C11C12 + C21C22 + C31C32 = 0 (from orthogonalization) 0 + -2 0.2(-2C32) + 0.2 C32 = 0 5C32 = 0

C32=0,C2=0,andC12=1 Therefore the eigenvector matrix becomes 0 0 -2V020V02 √020202 KE 吗2-(m2-m2 KE.=加m(Px2+p2+p2) 1hak hana KE Oy)T(iaz K.E.=2mlax2+ b. p=mv= ipx+ jpy kp p=o/×/tk/ba h a ioy +kia where i,j, and k are unit vectors along the x, y, and z axes
5 C32 = 0, C22 = 0, and C12 = 1 Therefore the eigenvector matrix becomes: ë ê ê é û ú ú 0 1 0 ù -2 0.2 0 0.2 0.2 0 2 0.2 2. a. K.E. = mv2 2 = è ç æ ø ÷ mö m mv2 2 = (mv)2 2m = p2 2m K.E. = 1 2m(px 2 + py 2 + pz 2) K.E. = 1 2mî í ì þ ý ü è ç æ ø ÷ ö -h i ¶ ¶x 2 + è ç æ ø ÷ ö -h i ¶ ¶y 2 + è ç æ ø ÷ ö -h i ¶ ¶z 2 K.E. = -h-2 2mî í ì þ ý ü ¶ 2 ¶x2 + ¶ 2 ¶y2 + ¶ 2 ¶z 2 b. p = mv = ipx + jpy + kpz p = î í ì þ ý ü i è ç æ ø ÷ ö -h i ¶ ¶x + j è ç æ ø ÷ ö -h i ¶ ¶y + kè ç æ ø ÷ ö -h i ¶ ¶z where i, j, and k are unit vectors along the x, y, and z axes. c. Ly = zpx - xpz Ly = z è ç æ ø ÷ ö -h i ¶ ¶x - x è ç æ ø ÷ ö -h i ¶ ¶z

First derive the general formulas for ox, ay, oz in terms of r, e, and and Or, 80 and ao in terms of x,y, and z. The general relationships are as follows x=r Sine Coso r2=x2+y2+z y=r Sine Sino sine= z=r Cose x2+y2+z2 First ax, ay, and az from the chain rule a ar a a0 a az =az 0 第+a Evaluation of the many "coefficients"gives the following Cose cose(φ Sine cosφ Cose Sind ap Sine sinφ Cose and 6
6 3. First derive the general formulas for ¶ ¶x , ¶ ¶y , ¶ ¶z in terms of r,q, and f, and ¶ ¶r , ¶ ¶q , and ¶ ¶f in terms of x,y, and z. The general relationships are as follows: x = r Sinq Cosf r 2 = x2 + y2 + z2 y = r Sinq Sinf sinq = x2 + y2 x2 + y2 + z2 z = r Cosq cosq = z x2 + y2 + z2 tanf = y x First ¶ ¶x , ¶ ¶y , and ¶ ¶z from the chain rule: ¶ ¶x = è ç æ ø ÷ ¶rö ¶x y,z ¶ ¶r + è ç æ ø ÷ ¶qö ¶x y,z ¶ ¶q + è ç æ ø ÷ ¶fö ¶x y,z ¶ ¶f , ¶ ¶y = è ç æ ø ÷ ¶rö ¶y x,z ¶ ¶r + è ç æ ø ÷ ¶qö ¶y x,z ¶ ¶q + è ç æ ø ÷ ¶fö ¶y x,z ¶ ¶f , ¶ ¶z = è ç æ ø ÷ ¶rö ¶z x,y ¶ ¶r + è ç æ ø ÷ ¶qö ¶z x,y ¶ ¶q + è ç æ ø ÷ ¶fö ¶z x,y ¶ ¶f . Evaluation of the many "coefficients" gives the following: è ç æ ø ÷ ¶rö ¶x y,z = Sinq Cosf , è ç æ ø ÷ ¶qö ¶x y,z = Cosq Cosf r , è ç æ ø ÷ ¶fö ¶x y,z = - Sinf r Sinq , è ç æ ø ÷ ¶rö ¶y x,z = Sinq Sinf , è ç æ ø ÷ ¶qö ¶y x,z = Cosq Sinf r , è ç æ ø ÷ ¶fö ¶y x,z = Cosf r Sinq , è ç æ ø ÷ ¶rö ¶z x,y = Cosq , è ç æ ø ÷ ¶qö ¶z x,y = - Sinq r , and è ç æ ø ÷ ¶fö ¶z x,y = 0

Upon substitution of these"coefficients Cos6CosφaSinφ = Sine Coso+ r a0r Sine師 Cose Sind a Cosφa ay=Sine Sin ar + r 80+r Sine ao, and az cose Sine a a +0 Next or, 80, and ao from the chain rule ar (, )最剧 gain evaluation of the the many"coefficients"results in 0φVx2+y2+ 0,Vx2+y2+z2 r√x2 φ Upon substitution of these"coefficients r ay
7 Upon substitution of these "coefficients": ¶ ¶x = Sinq Cosf ¶ ¶r + Cosq Cosf r ¶ ¶q - Sinf r Sinq ¶ ¶f , ¶ ¶y = Sinq Sinf ¶ ¶r + Cosq Sinf r ¶ ¶q + Cosf r Sinq ¶ ¶f , and ¶ ¶z = Cosq ¶ ¶r - Sinq r ¶ ¶q + 0 ¶ ¶f . Next ¶ ¶r , ¶ ¶q , and ¶ ¶f from the chain rule: ¶ ¶r = è ç æ ø ÷ ¶xö ¶r q,f ¶ ¶x + è ç æ ø ÷ ¶yö ¶r q,f ¶ ¶y + è ç æ ø ÷ ¶zö ¶r q,f ¶ ¶z , ¶ ¶q = è ç æ ø ÷ ¶xö ¶q r,f ¶ ¶x + è ç æ ø ÷ ¶yö ¶q r,f ¶ ¶y + è ç æ ø ÷ ¶zö ¶q r,f ¶ ¶z , and ¶ ¶f = è ç æ ø ÷ ¶xö ¶f r,q ¶ ¶x + è ç æ ø ÷ ¶yö ¶f r,q ¶ ¶y + è ç æ ø ÷ ¶zö ¶f r,q ¶ ¶z . Again evaluation of the the many "coefficients" results in: è ç æ ø ÷ ¶xö ¶r q,f = x x2 + y2 + z2 , è ç æ ø ÷ ¶yö ¶r q,f = y x2 + y2 + z2 , è ç æ ø ÷ ¶zö ¶r q,f = z x2 + y2 + z2 , è ç æ ø ÷ ¶xö ¶q r,f = x z x2 + y2 , è ç æ ø ÷ ¶yö ¶q r,f = y z x2 + y2 , è ç æ ø ÷ ¶zö ¶q r,f = - x2 + y2 , è ç æ ø ÷ ¶xö ¶f r,q = -y , è ç æ ø ÷ ¶yö ¶f r,q = x , and è ç æ ø ÷ ¶zö ¶f r,q = 0 Upon substitution of these "coefficients": ¶ ¶r = x x2 + y2 + z2 ¶ ¶x + y x2 + y2 + z2 ¶ ¶y + z x2 + y2 + z2 ¶ ¶z

xz a yz a Ox dy 西=y+xy+0花z Note, these many"coefficients"are the elements which make up the Jacobian matrix used whenever one wishes to transform a function from one coordinate representation to another. One very familiar result should be in transforming the volume element dxdydz to r2Sinedrdedd. For example f(x,y, z)dxdydz f(x(:.4)y(r,)z(r(.)p、( drddφ r tr a a ily az-zay a Sine i rSineSind(Cose a CoseSino a Cosφo rOse(SineSinp or+-p Smn6+CoCo$西 c -it 8
8 ¶ ¶q = x z x2 + y2 ¶ ¶x + y z x2 + y2 ¶ ¶y - x2 + y2 ¶ ¶z ¶ ¶f = -y ¶ ¶x + x ¶ ¶y + 0 ¶ ¶z . Note, these many "coefficients" are the elements which make up the Jacobian matrix used whenever one wishes to transform a function from one coordinate representation to another. One very familiar result should be in transforming the volume element dxdydz to r2Sinqdrdqdf. For example: õóf(x,y,z)dxdydz = õ ô ô ó f(x(r,q,f),y(r,q,f),z(r,q,f)) ï ï ï ï ï ï ï è ç ï æ ø ÷ ¶xö ¶r qf è ç æ ø ÷ ¶xö ¶q rf è ç æ ø ÷ ¶xö ¶f rq è ç æ ø ÷ ¶yö ¶r qf è ç æ ø ÷ ¶yö ¶q rf è ç æ ø ÷ ¶yö ¶f rq è ç æ ø ÷ ¶zö ¶r qf è ç æ ø ÷ ¶zö ¶q rf è ç æ ø ÷ ¶zö ¶f rq drdqdf a. Lx = -h i îï í ïì þï ý ïü y ¶ ¶z - z ¶ ¶y Lx = -h i è ç æ ø ÷ ö rSinqSinf è ç æ ø ÷ ö Cosq ¶ ¶r - Sinq r ¶ ¶q - -h i è ç æ ø ÷ ö rCosq è ç æ ø ÷ ö SinqSinf ¶ ¶r + CosqSinf r ¶ ¶q + Cosf rSinq ¶ ¶f Lx = - -h i è ç æ ø ÷ ö Sinf ¶ ¶q + CotqCosf ¶ ¶f b. Lz = -h i ¶ ¶f = - ih- ¶ ¶f Lz = -h i è ç æ ø ÷ ö -y ¶ ¶x + x ¶ ¶y

4 d-B 4x4-12x2+3 16x3-24x 48x2-24 lI 20 60X iii. e3x+e-3x 3(e3x-e-3x)9( -4x+2 B(v)is an eigenfunction of A(i) (1-x2) dx b(v 24x-24x3-12x3+3x 36x3+27x 9(4x3-3x)(eigenvalue is-9) B(iii )is an eigenfunction of A(ii x)(eigenvalue is 9) B(ii )is an eigenfunction of A(iii) d
9 4. B dB/dx d 2B/dx2 i. 4x4 - 12x2 + 3 16x3 - 24x 48x2 - 24 ii. 5x4 20x3 60x2 iii. e 3x + e-3x 3(e3x - e-3x) 9(e3x + e-3x) iv. x2 - 4x + 2 2x - 4 2 v. 4x3 - 3x 12x2 - 3 24x B(v.) is an eigenfunction of A(i.): (1-x2) d2 dx2 - x d dx B(v.) = (1-x2) (24x) - x (12x2 - 3) 24x - 24x3 - 12x3 + 3x -36x3 + 27x -9(4x3 -3x) (eigenvalue is -9) B(iii.) is an eigenfunction of A(ii.): d2 dx2 B(iii.) = 9(e3x + e-3x) (eigenvalue is 9) B(ii.) is an eigenfunction of A(iii.): x d dx B(ii.) = x (20x3)

20 4(5x4)(eigenvalue is 4) B() is an eigenfunction of A(vi dx2- 2x dx b(= (48x2-24)-2x(16x3-24x) 48x2-24-32x4+48x2 -32x4+96x2-24 8(4x4-12x2+3)(eigenvalue is-8) B(iv )is an eigenfunction of A(v. x dx2 +(I-x)dx B(iv) x(2)+(1-x)(2x-4) 2x+2x-4-2x2+4x 2x2+8x-4 -2(x2-4x +2)(eigenvalue is-2)
10 20x4 4(5x4) (eigenvalue is 4) B(i.) is an eigenfunction of A(vi.): d2 dx2 - 2x d dx B(i) = (48x2 - 24) - 2x (16x3 - 24x) 48x2 - 24 - 32x4 + 48x2 -32x4 + 96x2 - 24 -8(4x4 - 12x2 + 3) (eigenvalue is -8) B(iv.) is an eigenfunction of A(v.): x d2 dx2 + (1-x) d dx B(iv.) = x (2) + (1-x) (2x - 4) 2x + 2x - 4 - 2x2 + 4x -2x2 + 8x - 4 -2(x2 - 4x +2) (eigenvalue is -2) 5
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《理论化学导论》(英文版)Problems.pdf
- 《理论化学导论》(英文版)Chapter 8 Chemical Dynamics.pdf
- 《理论化学导论》(英文版)Chapter 7 Statistical Mechanics.pdf
- 《理论化学导论》(英文版)Chapter 6 Electronic Structures.pdf
- 《理论化学导论》(英文版)Chapter 5 An Overview of Theoretical Chemistry.pdf
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第一章 绪论(沙耀武).ppt
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第五章 不对称Diels-Alder反应(D-A反应).ppt
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第四章 烯键的不对称氧化反应.ppt
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第三章 羟醛缩合和有关的反应.ppt
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第七章 不对称反应在天然产物合成中的应用.ppt
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第六章 不对称催化氢化及其它还原反应.ppt
- 清华大学:《手性合成导论 Introduction to Chiral Synthesis》课程教学资源(PPT课件讲稿)第二章 羰基化合物的烷基化和加成反应.ppt
- 《分析化学》课程PPT教学课件(教案讲稿)滴定分析法——滴定分析法应用.ppt
- 《分析化学》课程PPT教学课件(教案讲稿)滴定分析法——滴定分析原理.ppt
- 《分析化学》课程PPT教学课件(教案讲稿)滴定分析法——化学平衡与滴定分析.ppt
- 《分析化学》课程PPT教学课件(教案讲稿)滴定分析法——滴定分析概述.ppt
- 华东理工大学:《高分子科学》课程教程教学资源(练习题)各章习题解答.doc
- 华东理工大学:《高分子科学》课程教程教学资源(PPT课件讲稿)逐步聚合反应的小结.ppt
- 华东理工大学:《高分子科学》课程教程教学资源(PPT课件讲稿)第三章 其它逐步聚合反应.ppt
- 华东理工大学:《高分子科学》课程教程教学资源(PPT课件讲稿)第二章 逐步聚合反应(2-8)逐步聚合方法.ppt
- 《理论化学导论》(英文版)Chapter 1 The Basics of Quantum Mechanics.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第一章 绪论.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第四章 炔烃与二烯烃.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第五章 对映异构.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第二章 烷烃.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第六章 脂环烃.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第三章 烯烃.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第七章 芳香烃.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第八章 卤代烃.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第九章 醇、酚、醚.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十五章 杂环化合物和生物碱.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十二章 羧酸衍生物.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十一章 羧酸.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十七章 氨基酸、蛋白质和核酸.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十八章 萜类和甾族化合物.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十三章 含氮化合物.pdf
- 西华师范大学:《有机化学》课程教学资源(讲义)第十六章 糖类化合物.pdf
- 北京大学化学学院:《超分子结构化学》课程教学资源(PPT课件讲稿,主讲:周公度).ppt
- 《有机化学》课程教学大纲 Organic Chemistry.doc
- 《有机化学》课程教学资源(试题库)第一章 绪论.doc