香港科技大学:ASER(A Large-scale Eventuality Knowledge Graph)

ASER: A Large-scale Eventuality Knowledge graph Yangqiu song Department of CSE, HKUST, Hong Kong Summer 2019 香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Contributors to related works: Hongming Zhang Xin Liu, Haojie Pan, Cane Leung, Hantian Ding
ASER: A Large-scale Eventuality Knowledge Graph Yangqiu Song Department of CSE, HKUST, Hong Kong Summer 2019 Contributors to related works: Hongming Zhang, Xin Liu, Haojie Pan, Cane Leung, HantianDing 1

Outline Motivation: NLP and commonsense knowledge Consideration: selectional preference New proposal: large-scale and higher-order selectional preference Evaluation and Applications
Outline • Motivation: NLP and commonsense knowledge • Consideration: selectional preference • New proposal: large-scale and higher-order selectional preference • Evaluation and Applications 2

Understanding humans language requires complex knowledge Crucial to comprehension is the knowledge that the reader brings to the text. The construction of meaning depends on the reader's knowledge of the language the structure of texts, a knowledge of the subject of the reading, and a broad-based background or world knowledge, Day and Bamford, 1998) Contexts and knowledge contributes to the meanings https://www.thoughtco.com/world-knowledge-language-studies-1692508
Understanding human’s language requires complex knowledge • "Crucial to comprehension is the knowledge that the reader brings to the text. The construction of meaning depends on the reader's knowledge of the language, the structure of texts, a knowledge of the subject of the reading, and a broad-based background or world knowledge.” (Day and Bamford, 1998) • Contexts and knowledge contributes to the meanings https://www.thoughtco.com/world-knowledge-language-studies-1692508 3

Knowledge is crucial to Nlu · Linguistic knowledge The task is part-of-speech(PoS)tagging with limited or no training data Suppose we know that each sentence should have at least one verb and at least one noun and would like our model to capture this constraint on the unlabeled sentences. Example from Posterior Regularization, Ganchev et al 2010,MLR) Contextual background knowledge: conversational implicature A: Is the player wearing a uniform? B: Ye A: Do he have baseball gear? B:Yes,a glove and a ball is in his hand. A: They are in the basehallfiel B:Yes A: He is wearing a B: Yes A: How the weather A Do you see a baseball ball? B: Yes it's in his hand A: The umpire is in the picture? A: The batter is in the picture? Xample taking from VisDi Do you see the fans? Ground Truth I a pitcher is leaning back about to throw a ball B:No (Das et al., 2017)4
Knowledge is Crucial to NLU • Linguistic knowledge: • “The task is part-of-speech (POS) tagging with limited or no training data. Suppose we know that each sentence should have at least one verb and at least one noun, and would like our model to capture this constraint on the unlabeled sentences.” (Example from Posterior Regularization, Ganchev et al., 2010, JMLR) • Contextual/background knowledge: conversational implicature Example taking from VisDial (Das et al., 2017) 4

al CMHK令 542 PM ,I CMHK令 5:43 PM aI CMH令 5: 44 PM al CMHK 5:44 PM ,l CMHK令 5:45PM 。98%m Hey Siri where is the ne Hey Siri l'm hungry Hey Siri I'm tired Hey Siri I'm tired Hey Siri I want to learn python restaurant Tap to Edit Tap to Edit> Tap to Edit) Tap to Edit) Tap to Edit) I can help with that! Iunderstand. We all n Listen to me, Yangqiu. PL I'm not sure l understand The closest one I see is once in a while iPhone right now and tak 門店 on Tong Chun Stree oK, one option Is i添好 wait here lich averages 3%h star: on Tong Chun Street in expensive which averages 3v2 sta Interacting with human involves a lot O% MAPS Inexpensive. of commonsense knowledge 添好運點心專門 Time 添好運點心專門店 Location Dim Sum. 3.1 km Dim sum·52km 女97)0n同版Y State 女★女★(97)on開飯潮,¥ Causality Ichiran(Tsim Sha Tsui) Colo Directions 14 min drive Ramen. 10 km (310)0n開版围,¥ ape Physical interaction Kam Wah Cafe Theory of mind Caribbean.9.8 km Human interactions 添好通贴心鬥店 ★实(1042)0m開,¥ ? Judy Kegl, The boundary between word knowledge and world knowledge, TINLAP3, 1987 Ernie Davis, Building Als with Common Sense, Princeton Chapter of the ACM, May 16, 2019
When you are asking Siri… Interacting with human involves a lot of commonsense knowledge • Space • Time • Location • State • Causality • Color • Shape • Physical interaction • Theory of mind • Human interactions • … Judy Kegl, The boundary between word knowledge and world knowledge, TINLAP3, 1987 Ernie Davis, Building AIs with Common Sense, Princeton Chapter of the ACM, May 16, 2019 5

How to define commonsense knowledge? Liu& singh, 2004) While to the average person the term commonsense' is regarded as synonymous with good judgement the al community it is used in a technical sense to refer to the millions of basic facts and understandings possessed by most people Such knowledge is typically omitted from social communications e., If you forget someone's birthday they may be unhappy with you H Liu and P Singh, ConceptNet- a practical commonsense reasoning tool-kit, BTT, 2004
How to define commonsense knowledge? (Liu & Singh, 2004) • “While to the average person the term ‘commonsense’ is regarded as synonymous with ‘good judgement’, ” • “the AI community it is used in a technical sense to refer to the millions of basic facts and understandings possessed by most people.” • “Such knowledge is typically omitted from social communications”, e.g., • If you forget someone’s birthday, they may be unhappy with you. H Liu and P Singh, ConceptNet- a practical commonsense reasoning tool-kit, BTTJ, 2004 6

How to collect commonsense knowledge ConceptNet5 Speer and havas 2012 Core is from Open mind Common Sense(OMCS)(liu& Singh, 2004 in house clock wake bed early moming breakfast stomach newspape coffee chew food Essentially a crowdsourcing based approach text mining
How to collect commonsense knowledge? • ConceptNet5 (Speer and Havasi, 2012) • Core is from Open Mind Common Sense (OMCS) (Liu & Singh, 2004) • Essentially a crowdsourcing based approach + text mining 7

Madeof LocationOf Effectof M CAUS SPATIAL Knowledge in ConceptNet parto Desireof GS Subeventof subevent o Thing ISA EVENTEgnto u Spatial First. Location Subevent of · Events UsedFor CapableOf Causal Affective Functional AGENTS CapableOf e Agents ReceivingAction
• Knowledge in ConceptNet • Things • Spatial • Location • Events • Causal • Affective • Functional • Agents 8

Comparison Database content Resource Capabilities Scales ConceptNet Commonsense OMCS (from Contextual inference 1.6 million relations (20020W) e among 300.000 nodes (automatic) 2004noW2017)21 million edges over 8 million nodes(1.5 million are English) WordNet Semantic Lexicon Expert Lexical categorization 200,000 word senses mant word-similarity Cyc Commonsense Expe Formalized logical 1.6 million facts with (19410 manual reasoning 118000 concepts 2004;now(2019)20 million facts with 1.5 million concepts Slides credit: Haixun Wang
Comparison Database content Resource Capabilities Scales ConceptNet (2002-now) Commonsense OMCS (from the public) (automatic) Contextual inference 1.6 million relations among 300,000 nodes (2004); now (2017) 21 million edges over 8 million nodes (1.5 million are English) WordNet (1985) Semantic Lexicon Expert (manual) Lexical categorization & word-similarity 200,000 word senses Cyc (1984-now) Commonsense Expert (manual) Formalized logical reasoning 1.6 million facts with 118,000 concepts (2004); now (2019) 20 million facts with 1.5 million concepts Slides credit: Haixun Wang 9

The scale A founder of al, marvin Minsky, once estimated that commonsense is knowing maybe 30 or 60 million things about the world and having them represented so that when something happens, you can make analogies with others'. Liu& Singh, 2004) H Liu and P Singh, ConceptNet- a practical commonsense reasoning tool-kit, BTT, 2004
The Scale • “A founder of AI, Marvin Minsky, once estimated that ‘...commonsense is knowing maybe 30 or 60 million things about the world and having them represented so that when something happens, you can make analogies with others’.” (Liu & Singh, 2004) H Liu and P Singh, ConceptNet- a practical commonsense reasoning tool-kit, BTTJ, 2004 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《传感器原理与应用》课程教学资源(PPT课件)第六章 传感器原理与测量电路.ppt
- 江苏航运职业技术学院:《港口电气维修》课程教学资源(PPT课件讲稿)鼠笼式异步电动机线路故障维修(主讲:季本山).ppt
- 淄博职业学院:《高电压技术》课程教学资源(PPT课件讲稿)高电压绝缘材料的认识(液体绝缘材料的认识).ppt
- 西安电子科技大学:《自动控制原理》课程教学资源(PPT课件讲稿)第二章 自动控制系统的数学模型.pptx
- 淄博职业学院:《高电压技术》课程教学资源(PPT课件讲稿)高电压绝缘材料的认识(固体绝缘材料的认识).ppt
- 《电力系统继电保护原理》课程教学资源(PPT课件讲稿)绪论、第1章 电网的电流电压保护.ppt
- 《过程控制系统》课程教学资源(PPT课件讲稿)第三章 单回路PID控制系统的设计与参数整定.ppt
- 《电机拖动与控制》课程教学资源(PPT课件讲稿)第3章 电机调速基本控制线路.ppt
- 西安电子科技大学:《自动控制原理》课程教学资源(PPT课件讲稿)第一章 自动控制系统的基本概念(主讲:王晓甜).pptx
- 沈阳工程学院:继电保护培训(PPT课件讲稿).ppt
- 日照职业技术学院:流量传感器(PPT课件讲稿).ppt
- 《人工智能导论》课程教学资源(PPT课件讲稿)第13章 游戏中的人工智能.ppt
- 武汉理工大学出版社:普通高等教育“十二五”规划教材《发电厂及变电站电气设备》课程电子教案(PPT课件)02 电力系统中性点的运行方式.ppt
- 北京石油化工学院:《电工学》课程教学资源(PPT课件讲稿)电路分析实验.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)第五章 电容元件与电感元件.ppt
- 山东大学:《人工智能与机器人 Artificial Intelligence and Robotics》课程教学资源(PPT课件讲稿)第二章 人工智能绪论(2.1-2.3,陈言俊、刘甜甜、王立志).ppt
- 《自动控制系统》课程教学资源(PPT课件讲稿)第四章 可逆调速控制系统和全数字调速控制器.ppt
- 《现代测试导论》课程教学资源(PPT课件讲稿)第一章 测试系统特性分析.ppt
- 《智能仪器技术》课程教学资源(PPT课件)第四章 智能仪器的基本数据处理算法(4.2-4.3).ppt
- 三峡大学:电能质量(PPT讲座讲稿).ppt
- 安全用电安全知识(PPT课件讲稿).ppt
- 安徽理工大学:《人工智能导论 Introduction to Artificial Intelligence》课程教学资源(PPT课件讲稿)第12章 专家系统.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)第五章 频域分析法——频率法.ppt
- 《电力系统继电保护》课程教学资源(PPT课件讲稿)第二章 电网的电流保护 2.1 单侧电源网络相间短路的电流保护.pps
- 武汉理工大学出版社:普通高等教育“十二五”规划教材《发电厂及变电站电气设备》课程电子教案(PPT课件)11 电气总布置.ppt
- 北京大学:《电路基础实验》课程教学资源(PPT课件讲稿,主讲:周小计).ppt
- 《电力系统继电保护原理》课程教学资源(PPT课件讲稿)第四章 输电线路纵联保护.pps
- 《电路》课程教学资源(PPT课件讲稿)第15章 电路方程的矩阵形式.ppt
- 长春工程学院:《电力系统分析》课程教学资源(PPT课件讲稿)第一章 电力系统的稳态分析(主讲:高嬿).ppt
- 电子科技大学:《虚拟仪器技术》课程教学资源(PPT课件讲稿)第4章 DAQ虚拟仪器硬件技术.ppt
- 《自动控制原理》课程电子教案(PPT教学课件)第二章 控制系统的数学描述.ppt
- 沈阳工程学院:《电机学》课程教学资源(PPT课件讲稿)第二章 变压器.ppt
- 《电力系统继电保护》课程教学资源(PPT课件讲稿)第六章 变压器保护.ppt
- 《电路》课程教学资源(PPT课件讲稿)第10章 含有耦合电感的电路.ppt
- 《单片机原理及接口技术》课程教学资源(PPT课件讲稿)第5章 MCS-51单片机定时器/计数器.pptx
- 华东理工大学:《化工仪表及自动化》课程教学资源(PPT课件讲稿)第三章 过程检测仪表.ppt
- 《电机学》课程电子教案(PPT课件讲稿)第六章 同步电机的稳态分析.ppt
- 《电气控制与可编程控制器技术》课程教学资源(PPT课件)第1章 电气控制技术.ppt
- 四川机电职业技术学院:《SIMATIC S7-300/400PLC原理及应用》课程教学资源(PPT课件讲稿)第3章 S7 PLC的模板特性及硬件组态.ppt
- 武汉理工大学出版社:普通高等教育“十二五”规划教材《发电厂及变电站电气设备》课程电子教案(PPT课件)06 自用电接线.ppt