上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_crystallography

Crystallography Leyun Wang School of Materials Science and Engineering, SJTU leyunwang@sjtu.edu.cn 1
Crystallography Leyun Wang School of Materials Science and Engineering, SJTU leyunwang@sjtu.edu.cn 1

Crystallography ·Crystal systems and Bravais lattices(晶 系与布拉维点阵) 影 ·Point group and space group(点群 与空间群) 。Reciprocal lattice (倒易点阵)
Crystallography • Crystal systems and Bravais lattices ( 晶 系与布拉维点阵 ) • Point group and space group (点群 与空间群 ) • Reciprocal lattice (倒易点阵 ) 2

Unit cell a The smallest group of particles in the material that constitutes the repeating pattern is the unit cell of the structure.The unit cell completely defines the symmetry and structure of the entire crystal lattice,which is built up by repetitive translation of the unit cell along its principal axes
Unit cell The smallest group of particles in the material that constitutes the repeating pattern is the unit cell of the structure. The unit cell completely defines the symmetry and structure of the entire crystal lattice, which is built up by repetitive translation of the unit cell along its principal axes

7 Crystal systems 14 Bravais Lattices CUBIC a=b=c =B=y=90° TETRAGONAL a=b+c =B=y=90° ORTHORHOMBIC a+b+c &=B=y=90° HEXAGONAL TRIGONAL a=btc a=b=c =B=90° =B=y*90° y=120° MONOCLINIC atb#c 4 Types of Unit Cell P=Primitive =y=90° I=Body-Centred B*120° F=Face-Centred C=Side Centred TRICLINIC a+b+c 7 Crystal Classes *阝*y*90° →14 Bravais Lattices 4
4 7 Crystal systems 14 Bravais Lattices

7 Crystal systems,14 Bravais lattices 32 Point groups,230 Space groups Crystal Crystal Point Space Bravais Required symmetries of point group family system groups groups lattices Triclinic None 2 2 1 1 twofold axis of rotation or 1 mirror Monoclinic 3 13 2 plane 3 twofold axes of rotation or 1 Orthorhombic twofold axis of rotation and two 3 59 4 mirror planes. Tetragonal 1 fourfold axis of rotation 7 68 2 7 1 Trigonal 1 threefold axis of rotation 5 Hexagonal 18 1 Hexagonal 1 sixfold axis of rotation 7 27 Cubic 4 threefold axes of rotation 5 36 3 Total:6 7 32 230 14
5 7 Crystal systems, 14 Bravais lattices 32 Point groups, 230 Space groups

32 Point groups and their relations m3m Class Group names 43m432m3 6/mmm Cubic 23 m3 432 43m m3m 4/mmm 23 6mm6m26226/m3m Hexagonal 6 6 % 622 6mm 62m 42m 4mm 422 4/m mmm Trigonal 3 3 32 3m 3m 3m 32 Tetragonal 422 Amm 42m mm2 222 2/m Monoclinic 2 头 222 mm2 nunm Orthorhombic Subgroup relations of the 32 crystallographic point groups Triclinic y (rows represent group orders from bottom to top as: 1,2,3,4,6,8,12,16,24,and48.) 2,3,6:2-fold,3-fold,6-fold rotation symmetry m:mirror symmetry 6 4-bar,6-bar:4-fold,6-fold retoinversion
6 32 Point groups and their relations 2, 3, 6: 2-fold, 3-fold, 6-fold rotation symmetry m: mirror symmetry 4-bar, 6-bar: 4-fold, 6-fold retoinversion

Rotation symmetry I-Fold Rotation Axis -An object that requires rotation of a full 3600 in order to restore it to its original appearance has no rotational symmetry. Since it repeats itself 1 time every 3600 it is said to have a 1-fold axis of rotational symmetry. 2-fold Rotation Axis If an object appears identical after a rotation of180°,that is twice in a360° rotation,then it is said to have a 2-fold rotation axis (360/180 = 2).Note that in these examples the axes we are referring to are imaginary lines that extend toward you perpendicular to the page or blackboard.A filled oval shape represents the point where the 2- fold rotation axis intersects the page
7 Rotation symmetry

3-Fold Rotation Axis-Objects that repeat themselves upon rotation of 1200 are said to have a 3-fold axis of rotational symmetry (360/120 =3),and they will repeat 3 3 3 times in a 3600 rotation. A filled triangle is used to symbolize the location of 3-fold rotation axis. 4-Fold Rotation Axis -If an object ◆ repeats itself after 900 of rotation,it will repeat 4 times in a 3600 rotation,as illustrated previously.A filled square is used to symbolize the location of 4- fold axis of rotational symmetry. 6-Fold Rotation Axis-If rotation of 600 about an axis causes the object to repeat itself,then it has 6-fold axis 6 6 ● of rotational symmetry (360/60=6). A filled hexagon is used as the symbol for a 6-fold rotation axis
8

Why 5-fold or 8-fold rotation symmetry is not possible for crystal systems? 9
9 Why 5-fold or 8-fold rotation symmetry is not possible for crystal systems?

mirror symmetry E m
10 mirror symmetry
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_OM4 Confocal Microscopy.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_OM3 Recap of the previous lectures.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_OM2 Specimen preparation for metallography.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_OM1 Optical principles of light microscopy.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)一种利用蝶翅纳米吸光结构的太阳能电池的设计.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)通识课研究论文汇编.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)耶鲁校长:这才是判断一个人受过教育的铁证.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)纳米技术研究进展讲稿.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)纳米技术最新进展及思考.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)纳米技术进展详述(合集).pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)深度解读2016年诺贝尔化学奖.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)大气净化机器人《走进纳米科学》报告书.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)普林斯顿校长:教育的真正意义在于让你能在挫折中成就自己.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)纳米技术在输电线路防冰除冰中的应用.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)开设纳米技术新生研讨课的实践与体会.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)纳米生物陶瓷材料面对骨科应用中的作用及改变.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(文献资料)减轻汽车发动机磨损的两种方法.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(专题讲稿)讲稿 纳米技术与生活.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(专题讲稿)专题3 纳米技术与生活.pdf
- 上海交通大学:《走进纳米科学》课程教学资源(专题讲稿)讲稿.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_Physics of X-ray radiation.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_Diffraction geometry.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_Diffraction intensity.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_Powder X-ray diffraction method and applications.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_Precise lattice parameter determination.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_Understand the diffraction peak broadening in XRD.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_EM1.1_Electron optics of transmission electron microscope.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_EM1.2_Specimen preparation for TEM.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_EM2_Diffraction in TEM and its analysis.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_EM3_Image contrast in TEM and its application.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_EM4 phase contrast HREM.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_EM5 X-ray microanalysis.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_homework assignment-tem.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_homework assignment3-19.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_homework assignment4-2.pdf
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_HW.docx
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_HW.docx
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_HW.doc
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_HW.pptx
- 上海交通大学:《Structural and Chemical Characterization of Materi》教学资源_HW.doc