《数字导航技术》课程教学资源(书籍文献)Navigation Sensors and Systems

Navigation Sensors andSystemsReferenceused:Titterton, D.H., and J.L.Weston1997.Strapdowninertial navigationtechnologyPeterPeregrinusandIEELondon.Massachusetts Instituteof TechnologySubject2.017
Navigation Sensors and Systems Reference used: Titterton, D.H., and J.L. Weston 1997. Strapdown inertial navigation technology. Peter Peregrinus and IEE, London. Massachusetts Institute of Technology Subject 2.017

What is Inertial Navigation?forceNavigation:Locating oneself in any(t+St)environment, e.g., dead-reckoning.Inertial: use of Newtonian mechanics:oymBody in linear motion stays in motion unlessacted on by an external force, causing any(t)acceleration:f = d(m y)/dt > m dv/dt ( * if dm/dt = 0!)yawAmechanicalaccelerometeris effectivelyatorqueload cellRotational velocity is given by a gyroscopiceffect:spin↑ = d (J @) /dtoryaw torque = Jspin X spin_rate X pitch_rateAmechanicalrategyroiseffectivelyapitchgyroscope with a load cell.MassachusettsInstituteofTechnologySubject2.017
What is Inertial Navigation? • Navigation: Locating oneself in an force environment, e.g., dead-reckoning. • Inertial: use of Newtonian mechanics: – Body in linear motion stays in motion unless acted on by an external force, causing an acceleration: v(t+Gt) v(t) m Gv f = d(m v)/dt Æ m dv/dt ( * if dm/dt = 0!) spin torque yaw – A mechanical accelerometer is effectively a load cell. – Rotational velocity is given by a gyroscopic effect: W = d (J Z) /dt or yaw torque = Jspin X spin_rate X pitch_rate – A mechanical rate gyro is effectively a pitch gyroscope with a load cell. Massachusetts Institute of Technology Subject 2.017

Svy(t+8t)@(t+St)spin@(t)@m=massV= velocity vectorpitchJ= inertia matrixE=force vectory(t))@ = rotation rate vector=torque vectorE = d/dt(my)= m &y / St *↑ = d/dt(J @)= J@ /8t *AccelerometermeasuresRategyromeasurestotalaccelerationininertialplatform-referencedframe,projected ontoangular rates:platform frame.p (roll rate)q (pitch rate)Includes, e.g.,r (yaw rate)centrifugal effect, andradius x do/dtMassachusetts InstituteofTechnologySubject2.017
Gv v(t) v(t+Gt) Accelerometer measures total acceleration in inertial frame, projected onto F = d/dt(mv) = m Gv / Gt* m = mass v = velocity vector F = force vector platform frame. Includes, e.g., centrifugal effect, and radius x dZ/dt Massachusetts Institute of Technology Subject 2.017 spin Z(t) Z(t+Gt) GZ pitch J = inertia matrix Z = rotation rate vector W = torque vector W = d/dt(J Z) = J GZ / Gt* Rate gyro measures platform-referenced angular rates: p (roll rate) q (pitch rate) r (yaw rate)

What does accelerometer give? Sum ofmeasuredaccelerationactuallinearaccelerationatsensorsensorPLUSprojection ofgravityaxis 1sensoraxis 2Suppose a 2D sensor is inclined atApparent0angle 0. Then measurements are:acceleration dueactualto gravitym, = dv,/dt + g sin 0accelerationm2 = dv2/dt + g cos 0atthesensorCase of three sensors:Suppose you integrate:m, = dv,/dt + g R(Φ,0,y)m2 = dv2/dt + g R2(Φ,0,)v is sensorreferencedvelocity,m3 = dv3/dt + g R3(Φ,0,)relatedtovelocity in a base framebyORV = RT(,0,)m = dy/dt + g R(Φ,0,)[Φ,0,y] are Euler angles; theycompletely define the attitude of thesensorMassachusettsInstituteofTechnologySubject2.017
What does accelerometer give? Sum of actual linear acceleration at sensor PLUS projection of gravity Suppose a 2D sensor is inclined at angle T. Then measurements are: m = dv1/dt + g sin T 1 m = dv2/dt + g cos T 2 Case of three sensors: m1 = dv1/dt + g R1(IT\) m = dv2/dt + g R2(IT\) 2 m = dv3/dt + g R3(IT\) 3 OR m = dv/dt + g R(IT\) Massachusetts Institute of Technology Subject 2.017 measured acceleration T acceleration sensor axis 1 sensor axis 2 Apparent acceleration due actual to gravity at the sensor Suppose you integrate: v is sensor referenced velocity, related to velocity in a base frame by v = RT(IT\)v b [IT\] are Euler angles; they completely define the attitude of the sensor

CoordinateObjective:to express avector ginvariousframesofreferenceFramesAnyframecanbetransformedtoanotherframethroughatranslationand arotationthrough three Euler angles [Φ,o,y]. One ofz,z'>twelvepossible sequences is:>g0WBaseframeis[x,y,z][x,y',z]a.Rotateaboutz bytoqiveb. Rotate about y'by 0 to give[x",y",z"]c. Rotate about x" by y to give [x",y",z""]Wy',y"dLetgbegiveninthebaseframe-thengY(given in the rotated frame) is:g" = R(,0,) gwhereRistherotationmatrix0+AXBoard example!x",x"MassachusettsInstituteofTechnologySubject2.017
Coordinate Frames z,z’ z’’ Objective: to express a vector q in various frames of reference Any frame can be transformed to another frame through a translation and a rotation through three Euler angles [IT\]. One of z’’’ twelve possible sequences is: Base frame is [x,y,z] x y y’,y’’ y’’’ I I T T \ \ q a. Rotate about z by Ito give [x’,y’,z’] b. Rotate about y’ by T to give [x’’,y’’,z’’] c. Rotate about x’’ by \ to give [x’’’,y’’’,z’’’] Let q be given in the base frame – then q’’’ (given in the rotated frame) is: q’’’ = R(IT\) q where R is the rotation matrix x’ Board example! x’’,x’’’ Massachusetts Institute of Technology Subject 2.017

Rategyrosarepure-theygiveexactlythe sensor-referenced rates→cancombination of three accelerometers and three rate gyros provide navigation?Accelerometers contain g projected through the attitude.Gyrosgive only angular rate;an integral will drift overtime!Consideronerategyroandtwoaccelerometers:mg1 = do/dtma1 = dv,/dt + g sin 0ma2 = dvz/dt + g cos 0One procedure for an attitude package (if accelerations are small compared to go):dv/dt ~ 0ma2dv,/dt ~ 0ma1g cos()g sin()mg1eestimateintegratekMassachusettsInstituteofTechnologySubject2.017
Rate gyros are pure – they give exactly the sensor-referenced rates Æ can combination of three accelerometers and three rate gyros provide navigation? Accelerometers contain g projected through the attitude. Gyros give only angular rate; an integral will drift over time! Consider one rate gyro and two accelerometers: m = dTdt g1 ma1 = dv1/dt + g sin T ma2 = dv2/dt + g cos T One procedure for an attitude package (if accelerations are small compared to gT: integrate T estimate g sin() g cos() dv2/dt ~ 0 dv1 m /dt ~ 0 a1 ma2 mg1 k + _ _ + _ + Massachusetts Institute of Technology Subject 2.017

L:Some Gyro Corrections:lattitude@e: earth rotation vector;Rotation of the earth:magnitudeis0.0042deg/sR:QE COS LEarthradius.6400kmV:platformvelocityCurvature of the earth:V/Ry(t+St)ovOECoriolis acceleration:QEXYy(t)(viewfromaboveNorthPole)Some Accelerometer Corrections:Centripetal acceleration due to Earth rotation:WE? /R cos LVariation of gravity field with lat./long.: e.g.,g(z=0) = 9.780318 * [1 + 0.00530 sin2 L -0.000006 sin2 2L JMassachusettsInstituteofTechnologySubject2.017
Some Gyro Corrections: L: lattitude Rotation of the earth: ZE cos L ZE: earth rotation vector; magnitude is 0.0042 deg/s R: Earth radius, 6400km Curvature of the earth: v: platform velocity v / R Coriolis acceleration: ZE x v ZE v(t+Gt) Gv v(t) (view from above North Pole) Some Accelerometer Corrections: Centripetal acceleration due to Earth rotation: ZE 2 / R cos L Variation of gravity field with lat./long.: e.g., g(z=0) = 9.780318 * [1 + 0.00530 sin2 L – 0.000006 sin2 2L ] Massachusetts Institute of Technology Subject 2.017

Accelerometermodel of Earth'smeasurementsgravitational fieldGyromeasurementsTransform toResolveglobal frameIntegrate,Correctionsfromattitudeintegrategravity, Earth rotationIntegrateand curvature, andangularCorioliseffectsratesvelocity,The General CasepositionMassachusetts Instituteof TechnologySubject2.017
model of Earth’s gravitational field Integrate Resolve Corrections from gravity, Earth rotation and curvature, and Integrate, integrate Transform to global frame attitude angular rates velocity, position Accelerometer measurements Gyro measurements The General Case Coriolis effects Massachusetts Institute of Technology Subject 2.017

Gyroscope TypesMechanical:0.05-20degrees perhourdrift.Vibration (e.g., tuning fork): 360 -3600 degreesCheap and small!perhour.Optical (ring laser):0.001-10degrees perhour.Optical (fiber optic) : 0.5 - 50 degrees per hour.ImageremovedforcopyrightreasonsAccelerometer TypesHoneywell HG1700 IMU.·Displaced spring.Pendulous mass: 0.1-10 mg bias.SiliconMEMS:<25mgSmall,canbecheapCrossbow IMU700:Honeywell HG1700:LittonLM100INS:20 deg/hr fiber optic (3)1 deg/hr ring-laser (3),0.003degree/hrringlaser9 mg silicon (3)1 mg silicon (3)0.025 mg siliconMassachusetts InstituteofTechnologySubject2.017
Gyroscope Types • Mechanical: 0.05-20 degrees per hour drift. • Vibration (e.g., tuning fork) : 360 - 3600 degrees per hour. Cheap and small! • Optical (ring laser): 0.001-10 degrees per hour. • Optical (fiber optic) : 0.5 – 50 degrees per hour. Accelerometer Types Image removed for copyright reasons. Honeywell HG1700 IMU. • Displaced spring • Pendulous mass: 0.1-10 mg bias • Silicon MEMS: < 25 mg Small, can be cheap Honeywell HG1700: 1 deg/hr ring-laser (3), 1 mg silicon (3) Crossbow IMU700: 20 deg/hr fiber optic (3), 9 mg silicon (3) Litton LM100 INS: 0.003 degree/hr ring laser 0.025 mg silicon Massachusetts Institute of Technology Subject 2.017

What is achievable with INs?The Litton LN100 alone achieves ~1mile/hr drift; dependsstrongly on errors in initialization.INTEGRATEDNAVIGATIONSYSTEMaugmentstheinertialsystemwith complementary sources-i.e.,anabsolutemeasurement:GPS hits (in air only)Radio beacon (aircraft)Celestial navigation (clear air only)Doppler radar (air) or Doppler acoustics (seabed)Altitude (air) or depth (water)Range using lasers (air) or acoustics (underwater)Magnetic field dipangle, relative to a mapTerrain/scenematching,relativetoanimagedatabaseEtc.MassachusettsInstituteofTechnologySubject2.017
What is achievable with INS? The Litton LN100 alone achieves ~1mile/hr drift; depends strongly on errors in initialization. INTEGRATED NAVIGATION SYSTEM augments the inertial measurement: GPS hits (in air only) Radio beacon (aircraft) Celestial navigation (clear air only) Doppler radar (air) or Doppler acoustics (seabed) Altitude (air) or depth (water) Range using lasers (air) or acoustics (underwater) Magnetic field dip angle, relative to a map Terrain/scene matching, relative to an image database Etc. system with complementary sources – i.e., an absolute Massachusetts Institute of Technology Subject 2.017
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数字导航技术》课程教学资源(书籍文献)惯性导航初始对准.pdf
- 《数字导航技术》课程教学资源(书籍文献)惯性技术.pdf
- 《数字导航技术》课程教学资源(书籍文献)捷联惯导系统原理(陈哲).pdf
- 《数字导航技术》课程教学资源(书籍文献)导航系统(袁信等).pdf
- 《数字导航技术》课程教学资源(书籍文献)航空机载惯性导航系统.pdf
- 《数字导航技术》课程教学资源(书籍文献)惯性导航.pdf
- 《数字导航技术》课程教学资源(书籍文献)四元数在刚体定位问题中的应用.pdf
- 《数字导航技术》课程教学资源(书籍文献)GPS原理与接收机设计(谢钢).pdf
- 《数字导航技术》课程教学资源(书籍文献)经度:寻找地球刻度的人【美】戴瓦.索贝尔.pdf
- 《数字导航技术》课程教学资源(书籍文献)经度:一个孤独的天才解决他所处时代最大难题的真实故事.pdf
- 南京大学:《系外行星大气光谱探测虚拟仿真实验》课程实验教学指导书.pdf
- 《西北工业大学学报(社会科学版)》:我国航天法立法所依托的国内法律环境分析.pdf
- 电子科技大学:《任务载荷数据融合理论及应用 Task Payloads Data Fusion Theory and Application》课程教学资源(思政课件讲稿,孙彬).pdf
- 电子科技大学:《任务载荷数据融合理论及应用 Task Payloads Data Fusion Theory and Application》课程教学资源(教学大纲).pdf
- 电子科技大学:航空航天概论省级课程思改建设思路及案例.pdf
- 电子科技大学:航空航天类课程教学资源(课件讲稿)航天器运动基本规律.pdf
- 电子科技大学:航空航天类课程教学资源(课件讲稿)气体流动的基本规律.pdf
- 电子科技大学:航空航天类课程教学资源(课件讲稿)飞机阻力.pdf
- 电子科技大学:航空航天类课程教学资源(课件讲稿)飞机机体结构.pdf
- 电子科技大学:航空航天类课程教学资源(课件讲稿)飞机飞行原理.pdf
- 《数字导航技术》课程教学资源(书籍文献)组合导航系统的应用.pdf
- 武汉大学:《惯性导航》课程教学课件(讲稿)第4章 平台式惯性导航系统.pdf
- 武汉大学:《惯性导航》课程教学课件(讲稿)第3章 惯性仪表.pdf
- 《数字导航技术》课程教学资源(书籍文献)无陀螺捷联式惯性导航系统.pdf
- 《数字导航技术》课程教学资源(书籍文献)Optimally Robust Kalman Filtering.pdf
- 《数字导航技术》课程教学资源(书籍文献)Kalman滤波理论及其在导航系统中的应用.pdf
- 《数字导航技术》课程教学资源(书籍文献)高精度导航系统.pdf
- 《数字导航技术》课程教学资源(书籍文献)奇特的一生.pdf
- 《导航技术》课程教学课件(PPT讲稿)第一讲 导航技术发展概述.pptx
- 《导航技术》课程教学课件(PPT讲稿)第七讲 惯性器件与系统的测试技术.pptx
- 《导航技术》课程教学课件(PPT讲稿)第三讲 惯导系统的误差分析与指标分配.pptx
- 《导航技术》课程教学课件(PPT讲稿)第二讲 惯导系统的物理概念说明.pptx
- 《导航技术》课程教学课件(PPT讲稿)第五讲 平台式与捷联式惯导系统.pptx
- 《导航技术》课程教学课件(PPT讲稿)第六讲 组合导航技术.pptx
- 《导航技术》课程教学课件(PPT讲稿)第四讲 惯导系统的初始对准.pptx
- 《导航技术》课程教学课件(PPT讲稿)力学基础.pptx
- 《系统辨识》课程教学课件(讲稿)第3章 最小二乘参数辨识方法及原理.pdf
- 《导航技术发展概论》课程教学课件(讲稿)第7章 视觉导航技术——图形图像匹配导航技术.pdf
