清华大学:《生物化学》课程PPT教学课件(英文版)Substituting equation

Substituting equation 27 into equation 26 yields the Michaelis-Menten e [S] max [S]+ KM (28) This equation accounts for the kinetic data given in Figure 8-15.At very low substrate concentration, when [S] is much less than KM, V [s]Vmax/KMi that is, the rate is directly proportional to the substrate concentration. At high substrate concentration, when [S] is much greater than KM, V=Vmax; that is, the rate is maximal, independent of substrate concentration. When s> Kmg V=V
When [S] > Km, V = Vmax

The meaning of KM is evident from equation 28. When [S]= KM,then V= Vmax/2. Thus, KM is equal to the substrate concentration at which the reac- tion rate is half its maximal value [S] max [S]+ KM (28)

192Part‖l PROTEINS nax max max 2 c K Substrate concentration [S] Figure 8-15 A plot of the reaction velocity V as a function of the substrate concentra- tion [S] for an enzyme that obeys Michaelis-Menten kinetics(Vmax is the maximal velocity and Km is the Michaelis constant)

Vmax and Km cAn BE DETERMINED BY VARYING THE SUBSTRATE CONCENTRATION The Michaelis constant, KM, and the maximal rate, Vmax, can be readily derived from rates of catalysis measured at different substrate concentra- tions if an enzyme operates according to the simple scheme given in equation 14. It is convenient to transform the Michaclis-Menten equation into one that gives a straight-line plot. This can be done by taking the reciprocal of both sides of equation 28 to give KM 99 max max S The Lineweaver-Burk plot [S] V= V max [S]+ KM (28)
The Lineweaver-Burk plot

A plot of l/Versus 1/[S], called a Lineweaver- Burk plot, yields a straight line with an intercept of 1/Vmax and a slope of KM/Vmax(Figure 8-16) Alternatively, KM and Vmax can be obtained by fitting the data to equa- tion 28 using a computer program Part Il A plot of 1/Versus 1/[S, called a Lineweaver- Burk plot, yields a straight PROTEINS line with an intercept of l/Vmax and a slope of KM/Vmax( Figure 8-16) Alternatively, KM and Vmax can be obtained by fitting the data to equa tion 28 using a computer program Figure 8-16 double-reciprocal plot of enzyme kinetics: 1/v is plotted as a function of 1/[S]. The slope is KM/Vmax Intercept =-1/KM Intercept =1/vna intercept on the vertical axis is 1/Vmax, and the intercept on the horizontal axis is -1/KM

Il. The Eadie- Hofstee Equation One transformation of the Michaelis-Menten equation is the Lineweaver Burk, or double-reciprocal, equation. Multiplying both sides of the Lineweaver-Burk equation by Vm and re- arranging gives the Eadie-Hofstee equation: Vo=(k)o+ v A plot of Vo vs Vo/S for an enzyme-catalyzed reaction is shown below V K V V The blue curve was obtained in the absence of in hibitor. Which of the other curves(A, B, or C)shows the enzyme activity when a competitive inhibitor is added to the reaction mixture?

SIGNIFICANCE OF KM AND Vmax VALUES The KM values of enzymes range widely (Table 8-2). For most enzymes, KM lies between 10-1 and 10-7M. The KM value for an enzyme depends on the particular substrate and also on environmental conditions such as pH, temperature, and ionic strength

Table 8-2 K M values of some enzymes Enzyme Substrate KLum) Chymotrypsin Acetyl-L-tryptophanamide 5000 Lysozyme Hexa-N-acetylglucosamine 6 B-Galactosidase Lactose 4000 Threonine deaminase Threonine 5000 Carbonic anhydrase CO 8000 Penicillinase Benzylpenicillin 50 ruvate carboxylase Pyruvate 400 HCO3 1000 ATP Arginine-tRNA synthetase Arginine tRNA 0.4 ATP 300

The Michaelis constant km has two meanings.First,KM is the concentration of substrate at which half the active sites are filled. Once the Km is known, the fraction of sites filled Es at any substrate concentration can be calculated from / V [S] ES (30 max [S]+ Km

Second, Km is related to the rate constants of the individual steps in the catalytic scheme given in equation 14. In equation 20, KM is defined as (k2+ k3)/kl. Consider a limiting case in which k2 is much greater than ks. This means that dissociation of the ES complex to E and S is much more rapid than formation of E and product. Under these conditions (k2>k3) E+S ES E+P (14) 2 Equation 19 can be simplified by defining a new constant, KM, called the Michaelis constant k+ k KI M (20)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:《生物化学》课程PPT教学课件(英文版)Enzymes Basic Concepts Kinetics.ppt
- 清华大学:《生物化学》课程PPT教学课件(英文版)One difficulty in using entropy.ppt
- 《电化学生物传感器》讲义.ppt
- 麻省理工大学:《人类学讲义》(英文版) lecture 17-2 More Problems With Culture.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 14-2 NUER FEUD VIOLENCE.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 13-2 The nuer.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 11-2 Kinshi.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 16-2 Problems with Culture.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 15-2 More On The Nuer.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 9 Anthropology of Science.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 8-2.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 5-2.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 7-2.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 10-2.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 3.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 2-2.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 1-2.pdf
- 麻省理工大学:《人类学讲义》(英文版) Ses2 CULTURE.pdf
- 麻省理工大学:《人类学讲义》(英文版) lecture 4-4.pdf
- 麻省理工大学:《人类学讲义》(英文版) Ses1 OPENER.pdf
- 清华大学:《生物化学》课程PPT教学课件(英文版)Chapter 8:Enzymes.ppt
- 清华大学:《生物化学》课程PPT教学课件(英文版)ENZYMES ARE HIGHLY SPECIFIC.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)动物稳态及维持.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)人类基因组计划.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)生物多样性及其保护.ppt
- 四川农大:《植物分类学》第三章 裸子植物的分类.ppt
- 四川农大:《植物分类学》第四章 被子植物的分类.ppt
- 《微生物学》第八章 遗传变异和育种.ppt
- 《微生物学》第二章(2-1)细菌.ppt
- 《微生物学》第二章 放线菌.ppt
- 《微生物学》第二章(2-3)蓝细菌.ppt
- 《微生物学》第六章 微生物代谢.ppt
- 《微生物学》第七章 微生物生长.ppt
- 《微生物学》第三章 真核生物.ppt
- 《微生物学》第四章 病毒.ppt
- 《微生物学》第五章 微生物营养.ppt
- 《微生物学》第一章 微生物的五大共性.ppt
- 《微生物学》绪论.ppt
- 麻省理工大学:《Design of Medical?Device》chapter 5 Replacing Organs with Permanent Prostheses.pdf
- 麻省理工大学:《Design of Medical?Device》chapter 3 Implants to Facilitate Tissue/Organ Regeneration.pdf