Coded Caching under Arbitrary Popularity Distributions

Coded Caching under Arbitrary Popularity Distributions Jinbei Zhang, Xiaojun Lin, Xinbing Wang
Coded Caching under Arbitrary Popularity Distributions Jinbei Zhang, Xiaojun Lin, Xinbing Wang

Caching and coded-Caching Caching is important for reducing backhaul requirement when serving content that many users are interested in The cache size at each user needs to be reasonable large compared to the amount of"popular"content server Coded caching can further reduce the backhaul requirement even when each individual cache size is small but the global cache size is substantial [Maddah-Ali and cache cache cache Neisen 14 User 1 User 2 User 3
Caching and Coded-Caching 2 Server cache cache cache User 1 User 2 User 3 • Caching is important for reducing backhaul requirement when serving content that many users are interested in • The cache size at each user needs to be reasonable large compared to the amount of “popular” content • Coded caching can further reduce the backhaul requirement even when each individual cache size is small, but the global cache size is substantial [Maddah-Ali and Neisen ’14]

Traditional (Uncoded)Caching: Individual cache size needs to be large N=3 files (unit-size) Server A=(A1,A2,A3) B=(B1,B2,B3) A. A Broadcast 2 C=(C1,C2,C3) channel 2,B2 B 2 3 K=3 users Back-haul requirement Cache size M=1 Uncoded Caching (A1,B1C1)[(A1,B1C1)(A,B1C1) K·(1 Individu caching gain User 1 User 2 User 3 wants a wants wants C
3 (𝐴1 , 𝐵1 , 𝐶1 ) User 1 wants 𝐴 User 2 wants 𝐵 User 3 wants 𝐶 Traditional (Uncoded) Caching: Individual cache size needs to be large Server K=3 users Cache size M=1 Broadcast channel 𝐴 = (𝐴1 , 𝐴2 , 𝐴3 ) 𝐵 = (𝐵1 , 𝐵2 , 𝐵3 ) 𝐶 = (𝐶1 , 𝐶2 , 𝐶3 ) N=3 files (unit-size): • Uncoded Caching 𝐾 ∙ 1 − 𝑀 𝑁 = 2 Back-haul Requirement: (𝐴1 , 𝐵1 , 𝐶1 ) (𝐴1 , 𝐵1 , 𝐶1 ) 𝐴2 , 𝐴3 𝐵2 , 𝐵3 𝐶2 , 𝐶3 Individual caching gain

Coded Caching Global Caching Gains N=3 files: A=(A1, A2, A3) Server B=(B1,B2,B3) C=(C1,C2,C3 Broadcast A2田B1 channel A3 C1 ↓B3C2 K=3 users Back-haul requirement Cache size M=1 Uncoded Caching (A1,B1,C1)[(A2,B2C2)(A3B3C3) K·1 A B Coded Caching [ 1 3 M K…(1N)1N 3 2 KM Global caching User 1 User 2 User 3 gaIn wants a wants wants C [1]Fundamental Limits of Caching, M. Maddah-Ali and U Niesen, IEEE Trans. Inf Theory, 2014
4 (𝐴1 , 𝐵1 , 𝐶1 ) (𝐴2 , 𝐵2 , 𝐶2 ) (𝐴3 , 𝐵3 , 𝐶3 ) 𝐴2 ⊕ 𝐵1 𝐴2 𝐵1 𝐴3 ⊕ 𝐶1 𝐴3 𝐶1 𝐵3 ⊕ 𝐶2 𝐵3 𝐶2 User 1 wants 𝐴 User 2 wants 𝐵 User 3 wants 𝐶 Coded Caching: Global Caching Gains Server 𝐾 ∙ 1 − 𝑀 𝑁 ∙ 1 1 + 𝐾𝑀 𝑁 = 1 • Coded Caching [1] [1] Fundamental Limits of Caching, M. Maddah-Ali and U. Niesen, IEEE Trans. Inf. Theory, 2014. K=3 users Cache size M=1 Broadcast channel 𝐴 = (𝐴1 , 𝐴2 , 𝐴3 ) 𝐵 = (𝐵1 , 𝐵2 , 𝐵3 ) 𝐶 = (𝐶1 , 𝐶2 , 𝐶3 ) N=3 files: Global caching gain • Uncoded Caching 𝐾 ∙ 1 − 𝑀 𝑁 = 2 Back-haul Requirement:

Average-Case vs Worst-Case K Expected rate r WiP(Wi Worst-case rate [Maddah-Ali and Niesen 14 max r =1.NK Obviously N K 7(WL)P(W1)≤.maxr(W) However, constant-factor results do Not carry over from the worst case to the average case max K ∑r(W)P(W≤C max r wWi L=1,,|N K ∑=1r*(W)P(W
Average-Case vs. Worst-Case 5 • Expected rate: • Worst-case rate [Maddah-Ali and Niesen `14]: • Obviously: • However, constant-factor results do NOT carry over from the worst case to the average case 𝑖=1 𝑁 𝐾 𝑟(𝑊𝑖)𝑃(𝑊𝑖) max 𝑖=1,…,𝑁𝐾 𝑟(𝑊𝑖 ) 𝑖=1 𝑁 𝐾 𝑟(𝑊𝑖 )𝑃 𝑊𝑖 ≤ max 𝑖=1,…,𝑁𝐾 𝑟(𝑊𝑖 ) max 𝑖=1,…,𝑁𝐾 𝑟(𝑊𝑖) max 𝑖=1,…,𝑁𝐾 𝑟 ∗(𝑊𝑖) ≤ 𝑐 σ𝑖=1 𝑁 𝐾 𝑟(𝑊𝑖)𝑃(𝑊𝑖) σ𝑖=1 𝑁𝐾 𝑟 ∗(𝑊𝑖)𝑃(𝑊𝑖) ≤ 𝑐

Related Work on the Average case U Niesen, and M.A. Maddah-Ali, "Coded Caching with Nonuniform Demands aXiv:13080178V2[cs,Ma.2014.(TT2016) divide the files into groups The gap between the lower bound and the achievable(upper) bound increases with of groups(unbounded) J. Hachem, N. Karamchandani and s. Diggavi, " Multi-level Coded Caching arXiy:14046563[cs,Apr.2014 Popularity has multiple levels The gap increases with of levels (unbounded) M.Ji, A tulino, J. Llorca and G Caire, " On the Average Performance of Caching and Coded Multicasting with Random Demands", arXiv: 1402.4576V2 [cs.,Jul.2014 Zipf popularity distribution pi a The gap increases with when a>1(unbounded)
Related Work on the Average Case • U. Niesen, and M.A. Maddah-Ali, “Coded Caching with Nonuniform Demands”, arXiv:1308.0178v2 [cs.IT], Mar. 2014. (TIT 2016) ➢ Divide the files into groups ➢ The gap between the lower bound and the achievable (upper) bound increases with # of groups (unbounded) • J. Hachem, N. Karamchandani and S. Diggavi, “Multi-level Coded Caching”, arXiv:1404.6563 [cs.IT], Apr. 2014. ➢ Popularity has multiple levels ➢ The gap increases with # of levels (unbounded) • M. Ji, A. Tulino, J. Llorca and G. Caire, “On the Average Performance of Caching and Coded Multicasting with Random Demands”, arXiv:1402.4576v2 [cs.IT], Jul. 2014. ➢ Zipf popularity distribution 𝑝𝑖 ∝ 1 𝑖 𝛼 ➢ The gap increases with 1 𝛼−1 when 𝛼 > 1 (unbounded) 6

The Open Question Can we find a coded caching scheme whose average-case performance is at most a constant factor away from the minimum independently of any popularity distributions?
The Open Question 7 Can we find a coded caching scheme whose average-case performance is at most a constant factor away from the minimum independently of any popularity distributions?

Our main results Constant-factor gap between the lower bound (rib)and the achievable (upper) bound(rub)of the expected backhual transmission rate Rb≤87Rb+2□R2b≤55Rb The achievable bound (rub) is attained by a simple coded Popularity caching scheme similar to [iet al 14 Perform coded caching only among the most popular KM Files However, all N, popular files are N1 File treated uniformly Index The key step is to show a matching lower bound Arbitrary Popularity Distribution! 8
Our Main Results • Constant-factor gap between the lower bound (𝑅𝑙𝑏) and the achievable (upper) bound (𝑅𝑢𝑏) of the expected backhual transmission rate: 𝑅𝑢𝑏 ≤ 87𝑅𝑙𝑏 +2 𝑅𝑢𝑏≤ 55𝑅𝑙𝑏 • The achievable bound (𝑅𝑢𝑏 ) is attained by a simple coded caching scheme similar to [Ji et al ’14] – Perform coded caching only among the most popular N1 files – However, all N1 popular files are treated uniformly • The key step is to show a matching lower bound 8 Arbitrary Popularity Distribution! File Index Popularity 1 𝐾𝑀 𝑁1

Network model Server with a broadcast channel Server · K users: cache size m ④File File Placement v 2@ Transmission Niles:={F1,…,F} Popularity( decreasing 2 File P={m1,…,p Request 2 Fil Request · Random request W; W2={n,…,fk,fk∈ FUser1user2 User K Rate for Wi is r(Wi Expected rate R(K,,P)=〉r(W)PW) 1
Network Model 9 • Server with a broadcast channel • K users: cache size M • N files: ℱ = 𝐹1, …, 𝐹𝑁 • Random request 𝑊𝑖 • Expected rate: Popularity (decreasing): 𝒫 = 𝑝1,… , 𝑝𝑁 𝑊𝑖 = 𝑓𝑖1, … , 𝑓𝑖𝐾 , 𝑓𝑖𝑘 ∈ ℱ Rate for 𝑊𝑖 is 𝑟(𝑊𝑖) 𝑅 𝐾, ℱ,𝒫 = 𝑖=1 𝑁 𝐾 𝑟(𝑊𝑖)𝑃(𝑊𝑖) User 1 File 1 ... File N User 2 ... User K Server File Placement User 1 File 1 ... File N User 2 ... User K 1 Server File Placement User 1 File 1 ... File N User 2 ... User K File Request File Request 1 2 2 2 2 Server File Placement User 1 File 1 ... File N User 2 ... User K File Request File Request File Transmission 1 2 3 2 2 2 Server

Main Intuition An"Insensitivity Property ·The“ best worst- case rate Uncoded caching N-M for serving N files can be Coded achieved by uniform caching n TMaddah-Ali and Niesen 14/MI caching M N.M、N K·(1-) (1-x) KM M N M N N K 1+ M Whenever k>> n/m Key Insight: Beyond K=N/M, the above rate is independent of the number of users K Due to its global caching gain, coded caching significantly reduce the threshold for this insensitivity to arise
• The “best” worst-case rate for serving N files can be achieved by uniform caching [Maddah-Ali and Niesen ’14] whenever K >> N/M • Key Insight: Beyond K=N/M, the above rate is independent of the number of users K • Due to its global caching gain, coded caching significantly reduce the threshold for this insensitivity to arise 10 Main Intuition: An “Insensitivity” Property K 𝑁 𝑀 − 1 Coded caching 𝑁 Uncoded caching 𝑁 − 𝑀 𝑁 𝑀 1 (1 ) (1 ) 1 1 M N M N K N M N M KM N • − • − = − +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《泛型编程 Generic Programming》课程教学资源(PPT课件讲稿)Chapter 14 Templates.ppt
- 华中科技大学:《面向对象程序设计》课程PPT教学课件(Visual C++ 编程)第2讲 Visual C++ 6.0开发环境.ppt
- 《编译原理实践》课程教学资源(PPT讲稿)词法分析程序的自动生成器LEX.ppt
- 《Java语言程序设计》课程教学资源(PPT课件讲稿)第四章 Applet及其应用.ppt
- 《计算机组装与维修》课程教学资源(PPT讲稿)第7章 显示器.ppt
- 计算机问题求解(PPT讲稿)算法在计算机科学中的地位(算法的效率).pptx
- 西安电子科技大学:《Mobile Programming》课程PPT教学课件(Android Programming)Lecture 9 Service and Broadcast Receiver.pptx
- 泛型编程 Generic Programming(PPT讲稿)Templates.ppt
- 北京大学SAS俱乐部:SAS软件会员培训(PPT讲稿)SAS编程语言入门.ppt
- 中国科学技术大学:《数据结构及其算法》课程电子教案(PPT课件讲稿)第三章 栈和队列.pps
- 白城师范学院:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第六章 关系数据理论.pptx
- 安徽广播影视职业技术学院:《ASP动态网页设计实用教程》课程教学资源(PPT讲稿)第1章 ASP基础(贾海陶).ppt
- 《MATLAB应用基础》课程教学资源(PPT课件讲稿)第4章 MATLAB的数值计算.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第七章 中间代码生成.ppt
- 上海交通大学:Basic Raster Graphics Algorithms for Drawing 2D Primitives.ppt
- Transport Layer Identification of P2P Traffic.ppt
- 复旦大学:《数据库基础与应用》课程PPT教学课件(Access案例教程)第1章 数据库基础知识.pptx
- 香港科技大学:Advanced Topics in NextGeneration Wireless Networks.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第五章 语法分析——自下而上分析.ppt
- 香港城市大学:Introduction to Real-Time Systems(Design and Analysis of Algorithms).pptx
- Distributed Systems and Networking Programmin(SOAP – Introduction).ppt
- 北京师范大学现代远程教育:《计算机应用基础》课程教学资源(PPT课件讲稿)第5章 Microsoft Excel 2010.pptx
- 图形处理及多媒体应用(PPT课件讲稿).pps
- Vitebi 译码.ppt
- 香港城市大学:Rank Aggregation in MetaSearch.ppt
- 《计算机网络技术》课程教学资源(PPT课件讲稿)第5章 广域网.ppt
- 中国科学技术大学:《现代密码学理论与实践》课程教学资源(PPT课件讲稿)第二部分 公钥密码和散列函数 第8章 数论入门(苗付友).pptx
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)向量体系结构.pptx
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)面向对象的分析与设计简介 OOA & OOD:An introduction.ppt
- 北京师范大学现代远程教育:《计算机应用基础》课程教学资源(PPT课件讲稿)第1章 计算机常识(主讲:马秀麟).pptx
- 《并发控制技术》课程教学资源(PPT课件讲稿)第7章 事务管理 transaction management.ppt
- 山东大学软件学院:非线性规划(PPT讲稿)一维搜索方法.ppt
- 合肥工业大学:《计算机网络技术》课程教学资源(PPT课件讲稿)第4章 交换网的运行.ppt
- 长春工业大学:《网页设计与制作》课程教学资源(PPT课件)第5章 Div+CSS布局技术.ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 09 Evaluation.ppt
- 上海交通大学:《计算机图形学 Computer Graphics》课程教学资源(PPT讲稿)CHAPTER 4 THE VISUALIZATION PIPELINE.pptx
- 香港中文大学:XML for Interoperable Digital Video Library.ppt
- 中国医科大学计算机中心:《虚拟现实与增强现实技术概论》课程教学资源(PPT课件讲稿)第3章 虚拟现实系统的输出设备.pptx
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)K-means & EM.pptx
- 北京大学:文本挖掘技术(PPT讲稿)文本分类 Text Categorization.ppt