香港科技大学:Cross-Selling with Collaborative Filtering(PPT讲稿)

Cross-Selling with Collaborative Filtering Qiang Yang HKUST Thanks: Sonny chee
1 Cross-Selling with Collaborative Filtering Qiang Yang HKUST Thanks: Sonny Chee

Motivation Question: a user bought some products already what other products to recommend to a user Collaborative Filtering(CF Automates circle of advisors +
2 Motivation ◼ Question: ◼ A user bought some products already ◼ what other products to recommend to a user? ◼ Collaborative Filtering (CF) ◼ Automates “circle of advisors”. +

Collaborative Filtering people collaborate to help one another perform filtering by recording their reactions. ,(Tapestry) Finds users whose taste is similar to you and uses them to make recommendations Complimentary to IR/IF IR/IF finds similar documents-CF finds similar users
3 Collaborative Filtering “..people collaborate to help one another perform filtering by recording their reactions...” (Tapestry) ◼ Finds users whose taste is similar to you and uses them to make recommendations. ◼ Complimentary to IR/IF. ◼ IR/IF finds similar documents – CF finds similar users

Example Which movie would sammy watch next? Ratings 1--5 Titles Starship Sleepless Trooper in Seattle MI-2 Matrix Titanic (R (R) Sammy Beatrice Dylan g Mathew 44423 Gum-Fat A333445 333345 1344? 454? Basil If we just use the average of other users who voted on these movies then we get Matrix 3: Titanic 1474=3.5 Recommend titanic But is this reasonable?
4 Example ◼ Which movie would Sammy watch next? ◼ Ratings 1--5 • If we just use the average of other users who voted on these movies, then we get •Matrix= 3; Titanic= 14/4=3.5 •Recommend Titanic! •But, is this reasonable? Starship Trooper (A) Sleepless in Seattle (R) MI-2 (A) Matrix (A) Titanic (R) Sammy 3 4 3 ? ? Beatrice 3 4 3 1 1 Dylan 3 4 3 3 4 Mathew 4 2 3 4 5 Gum-Fat 4 3 4 4 4 Basil 5 1 5 ? ? Titles Users

Types of Collaborative Filtering Algorithms Collaborative filters Statistical collaborative filters Probabilistic Collaborative Filters [PHlooj Bayesian Filters [BP9 9][BHK98] Association Rules [agrawal, Han] Open problems Sparsity First Rater, scalability
5 Types of Collaborative Filtering Algorithms ◼ Collaborative Filters ◼ Statistical Collaborative Filters ◼ Probabilistic Collaborative Filters [PHL00] ◼ Bayesian Filters [BP99][BHK98] ◼ Association Rules [Agrawal, Han] ◼ Open Problems ◼ Sparsity, First Rater, Scalability

Statistical Collaborative Filters Users annotate items with numeric ratings. Users who rate items "similarly" become mutual advisors Users U1 U2 Recommendation computed by taking a weighted aggregate of advisor ratings
6 Statistical Collaborative Filters ◼ Users annotate items with numeric ratings. ◼ Users who rate items “similarly” become mutual advisors. ◼ Recommendation computed by taking a weighted aggregate of advisor ratings. I1 I2 … Im U1 U2 . . Un U1 . . . . . . U1 . . . . . . U2 . . . . U2 . . . . . . . . … . . . . . . . . . . . . . . Un . . . . . . Un . . . . . . Items Users Users Users

Basic idea Nearest Neighbor Algorithm given a user a and item i First, find the the most similar users to a Let these be y Second, find how these users(y ranked i Then, calculate a predicted rating of a on i based on some average of all these users y How to calculate the similarity and average? 7
7 Basic Idea ◼ Nearest Neighbor Algorithm ◼ Given a user a and item i ◼ First, find the the most similar users to a, ◼ Let these be Y ◼ Second, find how these users (Y) ranked i, ◼ Then, calculate a predicted rating of a on i based on some average of all these users Y ◼ How to calculate the similarity and average?

Statistical Filters GroupLens [resnick et al 94, MiT Filters UseNet News postings Similarity: Pearson correlation Prediction: Weighted deviation from mean =ra+-∑(n1-rn) au
8 Statistical Filters ◼ GroupLens [Resnick et al 94, MIT] ◼ Filters UseNet News postings ◼ Similarity: Pearson correlation ◼ Prediction: Weighted deviation from mean = + − a u u u i a Pa,i r r , r w , ( ) 1

Pearson Correlation 76543210 Item 2 Item 3 Item 4 Item 5 Items User a - User B -UserC Pearson correlation User AbC B11-1
9 Pearson Correlation 0 1 2 3 4 5 6 7 Item 1 Item 2 Item 3 Item 4 Item 5 Items Rating User A User B User C Pearson Correlation A B C A 1 1 -1 B 1 1 -1 C -1 -1 1 User User

Pearson correlation a Weight between users a and u Compute similarity matrix between users Use Pearson Correlation(-1, 0, 1) Let items be all items that users rated Pearson correlation (ai-rari-ru) ser AbC items Items ∑ ru) B|11-1
10 Pearson Correlation ◼ Weight between users a and u ◼ Compute similarity matrix between users ◼ Use Pearson Correlation (-1, 0, 1) ◼ Let items be all items that users rated − − − − = items u u i items a a i items u u i a a i a u r r r r r r r r items w 2 , 2 , , , , ( ) ( ) ( )( ) | | 1 Pearson Correlation A B C A 1 1 -1 B 1 1 -1 C -1 -1 1 User User
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国科学技术大学:《密码学导论》课程教学资源(PPT课件讲稿)第4章 数论基础(主讲:李卫海).pptx
- 《高级语言程序设计》课程教学资源(试卷习题)试题一(无答案).doc
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第6章 函数.ppt
- 东南大学:《操作系统概念 Operating System Concepts》课程教学资源(PPT课件讲稿)13 文件系统 I/O Systems.ppt
- 沈阳理工大学:《网站建设与维护》课程教学资源(PPT课件讲稿)第四章 动态网页基础.ppt
- 《计算机网络技术》课程教学资源(PPT课件讲稿)Chapter 03 物理层.ppt
- 福建工程学院:《C#程序设计》课程教学资源(实验指导书).doc
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第8章 不确定性知识的表示与推理.ppt
- 中国人民大学:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第九章 关系查询处理和查询优化.ppt
- 安徽理工大学:《计算机网络》课程PPT教学课件(第4版)第1章 概述(编著:谢希仁).ppt
- 《C语言程序设计》课程电子教案(PPT课件)第三章 控制语句.ppt
- 中国科学技术大学:《机器学习》课程PPT教学课件(讲稿)第二章 模型评估与选择.pptx
- 山东大学:《面向对象程序设计》课程教学资源(PPT课件讲稿)第四章 编写对象接口.ppt
- 《网站设计与建设 Website design and developments》课程教学资源(PPT课件讲稿)第三部分 网站设计技术 第10章 HTML基础.ppt
- 清华大学:《计算机导论》课程电子教案(PPT教学课件)第8章 计算机领域的典型问题.ppt
- 《单片机应用技术》课程PPT教学课件(C语言版)第7章 定时器/计数器.ppt
- 面向对象编程 Object-Oriented Programming(PPT课件讲稿)继承 Inheritance.ppt
- 《C语言程序设计》课程教学资源(PPT课件)第6章数据类型和表达式.ppt
- Scanning Electron Microscopy(SEM).ppt
- 《The C++ Programming Language》课程教学资源(PPT课件讲稿)Lecture 03 Standard Template Library & Generic Programming.ppt
- 西安电子科技大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第七章 常用接口芯片技术.pptx
- 西安交通大学:《程序设计语言》课程电子教案(PPT教学课件)第二章 Fortran程序设计基础.ppt
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第一章 计算机网络概述(2015版).ppt
- 软件测试(PPT课件讲稿)黑盒测试.pptx
- 《PHP程序设计》课程教学资源(教学大纲).doc
- 中国人民大学:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第三章 数据链路层.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第七章 定时计数器与可编程计数器阵列.ppt
- 《Photoshop_CS入门教程》教学资源(PPT讲稿)第1章 浏览Photoshop CS.ppt
- 《计算机组装与维护》课程教学资源(PPT课件讲稿)第七章 计算机硬件故障处理.ppt
- 上海交通大学:《微机原理与接口技术》课程教学资源(教学大纲)信息与计算科学专业.pdf
- 面向服务的业务流程管理(PPT讲稿)Business Process Modeling Notation(BPMN), Business Process Executive Language(BPEL), and XML Process Definition Language(XPDL).pptx
- 《微机原理》课程教学资源(PPT课件讲稿)第九章 可编程接口芯片及其与CPU的接口.ppt
- Wrapper Generation and HTML Reduction(PPT讲稿).ppt
- 西安交通大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第7章 模拟量输入输出接口.ppt
- 《C语言程序设计》课程电子教案(PPT教学课件)第四章 选择结构程序设计.ppt
- 《JAVA与面向对象编程》课程教学资源(PPT课件讲稿)第二章 Java语法基础.ppt
- 华北科技学院:图像的采集与处理(PPT课件讲稿)Photoshop CS.ppt
- 《数据结构》课程PPT教学课件(讲稿)第一章 数据结构基础.ppsx
- 《计算机维修》课程教学资源(PPT课件讲稿)第3章 磁盘工具.ppt