上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec22

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341:DISCRETE-TIME SIGNAL PROCESSING OpenCourse Ware 2006 Lecture 22 Modulated Filter Bank Reading:Review Section 4.7 of OSB;also carefully study the figures in this handout. In this lecture,we will tie together some relationships between modulated filter banks(MFB) for time-dependent Fourier transform(TDFT),polyphase structure,and performing the discrete Fourier transform(DFT)through the fast Fourier transform(FFT). Similarity between the general form of a branch of the MFB and the decimation filter suggests that a polyphase implementation of the MFB is possible.As a first step,consider a single filter-downsampler pair in the parallel structure: holn] ↓R voln] xn] hkin] ↓R vhin] hw-i(n] ↓R UN-1[n] A typical modulated filter bank. Recall that a possible polyphase decomposition of an impulse response hn]is to downsample successively advanced (rather than delayed)versions of it: 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 22 Modulated Filter Bank Reading: Review Section 4.7 of OSB; also carefully study the figures in this handout. In this lecture, we will tie together some relationships between modulated filter banks (MFB) for time-dependent Fourier transform (TDFT), polyphase structure, and performing the discrete Fourier transform(DFT) through the fast Fourier transform(FFT). Similarity between the general form of a branch of the MFB and the decimation filter suggests that a polyphase implementation of the MFB is possible. As a first step, consider a single filter-downsampler pair in the parallel structure: A typical modulated filter bank. Recall that a possible polyphase decomposition of an impulse response h[n] is to downsample successively advanced (rather than delayed) versions of it: 1

n hn。hn IR eon ↑R ioln,h包 2-1 h[m-1 IR eiln] ↑R hiin] elm] hin-2 IR e2[n] R h2in] 心 e2[n] hin-R+1] IR eR-1in] ↑R An-iin] Polyphase decomposition of hn] Written analytically,such a decomposition applied to the prototype filter Ho(z)and the mod- ulated filters Hk(z)is: hon]Ho(z)=Hoo(R)+Ho(R)+...+(R-1)Ho(R-1)(2R) R-1 PHp(eR) p=0 R-1 sm=台s()=Ho(e装)=∑e-2Hp(e-2装2A) p=0 R-1 =∑PH(e, p=0 where Hop(z)is the p-th polyphase component of Ho()and Hp()=Hop(e) is the p-th polyphase component of Hk(z).This decomposition suggests implementing the k-th filter of the MFB with the following polyphase structure: cin] Hxo(zR) IR rn] R xon】 Hxo(z) 味切 Hg1(2R) tIin] Hx(2) · HkR-e用 ER-1n Hk(R-1)(2) Polyphase implementation of the k-th branch of the MFB 2
Polyphase decomposition of h[n] Written analytically, such a decomposition applied to the prototype filter H0(z) and the modulated filters Hk(z) is: h0[n] ⇔ H0(z) = H00(zR) + zH01(zR) + . . . + z(R−1)H0(R−1)(zR) = R �−1 p=0 zpH0p(zR) hk[n] = ejωknh0[n] ⇔ Hk(z) = H0(ej 2πk N z) = R �−1 p=0 e−j 2πkp N zpH0p(e−j 2πkR N zR) = R �−1 p=0 zpHkp(zR) , where H0p(z) is the p-th polyphase component of H0(z) and Hkp(zR) = e−j 2πkp N H0p(e−j 2πkR N zR) is the p-th polyphase component of Hk(z). This decomposition suggests implementing the k-th filter of the MFB with the following polyphase structure: Polyphase implementation of the k-th branch of the MFB 2

The output V(z)of the k-th branch is a linear combination of intermediate signals rkn] Xk(z),0≤k≤R-1: R-1 Vi(z)=>Xp(=)Hkp(),Hkp(z)=e Hop(e 2). p=0 Observe that xo[n],x1[n],...,R-n]are the polyphase components of the input sequence x[n]. Because they are common to each parallel branch of the MFB,we can share them at the input to obtain the following amalgamated structure: MIMO system R-inputs N-outputs tn IR coln] voln] IR n +h[n] H IR xaln] +2[n] IR ZR-1[n] UN-1[n] Polyphase implementation of the MFB In this system: Filter bank output rate N No.of filter bank channels =N. Filter bank input rate R The transfer function matrix H satisfies Xo(z) 6(z) X1(z) (z) XR-1(2) VN-1(2) Hp()=eop(ej特z). Such a polyphase implementation is preferred over the direct implementation of the MFB because it is more efficient in terms of computational complexity.To see why this is true, assume our system operates with complex arithmetic.In the original system: 3
� The output Vk(z) of the k-th branch is a linear combination of intermediate signals xk[n] Xk(z),0 ≤ k ≤ R − 1: ⇔ R−1 p=0 Observe that x0[n], x1[n], . . . , xR−1[n] are the polyphase components of the input sequence x[n]. Because they are common to each parallel branch of the MFB, we can share them at the input to obtain the following amalgamated structure: Polyphase implementation of the MFB In this system: Filter bank output rate = N No. of filter bank channels = N, . Filter bank input rate R The transfer function matrix H satisfies Hkp(z) = e−j 2πkp H0p(e−j 2πk V N N k(z) = Xp(z)Hkp(z) , z) . ⎡ ⎢ ⎢ ⎢ ⎢ ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎤ ⎥ ⎥ ⎥ ⎥ X0(z) X1(z) ⎡ ⎢ ⎢ ⎢ ⎢ ⎤ ⎥ ⎥ ⎥ ⎥ V0(z) V1(z) ⎤ ⎥ ⎥ ⎥ Hkp ⎥ N (z) . = . . . ⎣ ⎣⎦ . ⎦ ⎣ . ⎦ XR−1(z) VN−1(z) Hkp(z) = e−j 2πkp H0p(e−j 2πk N N z) . Such a polyphase implementation is preferred over the direct implementation of the MFB because it is more efficient in terms of computational complexity. To see why this is true, assume our system operates with complex arithmetic. In the original system: 3

Input x[n]clocked at 1 sample/unit time total of LN Each modulated filter hkn]is of length L complex multiplies/input sample N modulated filters he[n]in the MFB In the polyphase implementation: Input subsequence xk[n]clocked at sample/unit time Each polyphase component filterp is of length ())(R)(N)= R polyphase components for each modulated filter hknl multiplies/input sample N modulated filters hkn]in the MFB A polyphase structure hence gives reduction in the required number of multiplications.To take one step further,let's consider in more detail the R-input,N-output MIMO structure on the previous page.If we let R=N,each polyphase component filter simplifies to Hkp(z)=e Hop(), 0≤k≤N-1,0≤p≤R-1=N-1. Such a system is said to be critically sampled.Its outputs are N N- V(z)= ∑Xa(e)(ee-g-∑xlap(ew7, 0≤k≤N-1. p=0 p=0 Gp(z)÷gpn Looks familiar?This is the N-point DFT of gpn].It gives rise to the following structure: NxN N zon] Hoo(z) goln] →o[ml N zin gin Ho1(2) -viIn] w N t2n g2 n Ho2(2) +2[m N TN-1n gw-in] w-1(2 vN-1[n] N-point DFT Polyphase implementation of the MFB using DFT/FFT N-1 vn]=gpln]W=N-point DFT of gpln]at each n p=0 4
� � � �� � � Input x[n] clocked at 1 sample/unit time Each modulated filter hk[n] is of length L N modulated filters hk[n] in the MFB In the polyphase implementation: ⎭ ⇒ ⎫ ⎪⎬ ⎪ total of LN complex multiplies/input sample ⎫ ⎪⎪⎪⎬ ⎪⎪⎪⎭ ( 1 R)(R)(N) = LN R)( L ⇒ R multiplies/input sample Input subsequence xk[n] clocked at 1 sample/unit time R L Each polyphase component filter hkp[n] is of length R R polyphase components for each modulated filter hk[n] N modulated filters hk[n] in the MFB 1 A polyphase structure hence gives R reduction in the required number of multiplications. To take one step further, let’s consider in more detail the R-input, N-output MIMO structure on the previous page. If we let R = N, each polyphase component filter simplifies to Hkp(z) = e−j 2πkp N H0p(z) , 0 ≤ k ≤ N − 1 , 0 ≤ p ≤ R − 1 = N − 1 . Such a system is said to be critically sampled. Its outputs are N−1 N−1 p=0 p=0 Xp(z)H0p(z)e−j 2πkp N Xp(z)H0p(z) Gp(z)⇔gp[n] Wkp N Vk(z) = = , 0 ≤ k ≤ N − 1 . Looks familiar? This is the N-point DFT of gp[n]. It gives rise to the following structure: Polyphase implementation of the MFB using DFT/FFT N−1 p=0 4 Wkp N vk[n] = gp[n] = N-point DFT of gp[n] at each n

The N-point DFT in this system can be efficiently computed using the FFT.With both the polyphase structure and the FFT in place: Input [n]clocked at sample/unit time 卡mul/input sample Each polyphase component filteris of length → to compute gp[n], N channels in the MFB 0≤p≤N-1 gpl[n,0≤p≤N-l,clocked at录sample/unit time l0g2 N mul/input sample Nlog2 N multiplies for the FFT for the FFT This yields a total of+log2 N multiplications/input sample.Clearly the polyphase structure with FFT gives a large efficiency improvement in comparison to the direct implementation of MFB.Summarizing,the total number of multiplications required by each implementation is: Direct implementation (LN) multiplies/input sample Polyphase implementation ( multiplies/input sample Polyphase,N=R,FFT (+log2 N)multiplies/input sample As a conclusion to our discussion on the polyphase implementation of the MFB with FFT, here are two special cases of the system we have derived: Special Case 1:L=N=R L length of the window,length of the prototype filter N desired number of modulated filters, sampling rate of the TDFT in the frequency domain R amount of shift by the window at each time step, down sampling rate of the TDFT in the time domain Assume the prototype filter has the following impulse response: hon -N+1 0 Its polyphase decomposition is hooln]=hoolδ[ml,.,hop[m=ho-pδml. 5
� The N-point DFT in this system can be efficiently computed using the FFT. With both the polyphase structure and the FFT in place: ⎭ ⇒ ⎫ ⎪⎬ ⎪ Input xk[n] clocked at 1 sample/unit time N L mul/input sample N L Each polyphase component filter hkp[n] is of length N to compute gp[n], N channels in the MFB 0 ≤ p ≤ N − 1 [n], 0 ≤ p ≤ N − 1, clocked at 1 sample/unit time N N log2 N multiplies for the FFT log2 N mul/input sample ⇒ for the FFT gp L This yields a total of N +log2 N multiplications/input sample. Clearly the polyphase structure with FFT gives a large efficiency improvement in comparison to the direct implementation of MFB. Summarizing, the total number of multiplications required by each implementation is: Direct implementation (LN) multiplies/input sample Polyphase implementation ( LN R ) multiplies/input sample Polyphase, N = R, FFT ( L N + log2 N) multiplies/input sample As a conclusion to our discussion on the polyphase implementation of the MFB with FFT, here are two special cases of the system we have derived: Special Case 1: L = N = R L length of the window, length of the prototype filter N desired number of modulated filters, sampling rate of the TDFT in the frequency domain R amount of shift by the window at each time step, down sampling rate of the TDFT in the time domain Assume the prototype filter has the following impulse response: Its polyphase decomposition is h00[n] = h0[0]δ[n], . . . , h0p[n] = h0[−p]δ[n] . 5

The polyphase FFT implementation is then Polyphase implementation of the MFB with FFT,L=N=R Special Case 2:L=2N=2R Here the polyphase components are 2-points long.Since L =2R,time aliasing occurs when the N-point DFT is performed through FFT. hin-p hop(n]ho[-pl6(n]ho[-p-N]6[n +1] cn] IN ho[0]6[n]ho[-N]6[n+1] voln] IN ho[-16nl+ho-N-1]6n+1] viin] 2 N-point DFT ho[-216(n]ho[-N-216[n+1] +2[nl ↓N hol-N+1]8[n+ho[-2N+1]6n+1] →UN-[n windowing and time-aliasing Polyphase implementation of the MFB with FFT,L=2N =2R 6
FFT implementation is then Polyphase implementation of the MFB with FFT, L = N = R Case 2: L = 2N = 2R polyphase components are 2-points long. Since L = 2R, time aliasing occurs when the N-point DFT is performed through FFT. The polyphase Special Here the Polyphase implementation of the MFB with FFT, L = 2N = 2R 6
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec21.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec20.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec19.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec18.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec17.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec16.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec15.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec09.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec08.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec06.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec05.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec04.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec03.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec02.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_dsp3-9章中文版.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch9 FFT.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch9 DFT.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch7_Digital Filter Realization.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch6_Transfer Functions.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch4_FIR filtering and convolution.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_Introduction to Signal Processing.pdf
- 《数字信号处理 Digital Signal Processing(B)》教学资源(参考资料)Digital Signal Processing Principles, Algorithms, and Applications Third Edition(John G. Proakis、Dimitris G. Manolakis).pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_数字信号处理及其matlab实现.pdf
- 上海交通大学:《工程实践与科技创新》课程教学资源_Altium Designer 电路板设计.ppt
- 上海交通大学:《工程实践与科技创新》课程教学资源_历年优秀作业.pdf
- 上海交通大学:《工程实践与科技创新》课程教学资源_智能小车_焊接.pdf
- 上海交通大学:《工程实践与科技创新》课程教学资源_电子元件介绍.ppt
- 上海交通大学:《工程实践与科技创新》课程教学资源_电源板元件清单.doc
- 上海交通大学:《工程实践与科技创新》课程教学资源_自动控制小车电路原理与演示程序说明.pdf
- 上海交通大学:《工程实践与科技创新》课程教学资源_软件编译与下载(工创1:自动控制小车).doc
- 上海交通大学:《工程实践与科技创新》课程教学资源_自动控制小车焊接.pdf
- 上海交通大学:《工程实践与科技创新》课程教学资源_自动控制小车电路原理与演示程序说明.pdf
- 上海交通大学:《电路与电子技术》课程教学资源(课件讲稿)多级放大电路.ppt
- 上海交通大学:《电路与电子技术》课程教学资源(课件讲稿)常用半导体器件.pdf
- 上海交通大学:《电路与电子技术》课程教学资源(课件讲稿)数字电子技术——门电路和组合逻辑电路.pdf
- 上海交通大学:《电路与电子技术》课程教学资源(课件讲稿)数字电子技术——触发器和时序逻辑电路.pdf
- 上海交通大学:《电路基础》课程教学资源(PPT课件)第一章 基本概念和基本规律 §1.3.1 基尔霍夫定律 §1.3.2 基尔霍夫定律 §1.3.3 从网络到图 §1.3.4 KCL、KVL的矩阵形式 §1.3.5 特勒根定理.ppt
- 上海交通大学:《电路基础》课程教学资源(PPT课件)第一章 基本概念和基本规律 §1.4.1 电阻元件及其约束方程 §1.4.1 功率和能量.ppt
- 上海交通大学:《电路基础》课程教学资源(PPT课件)第一章 基本概念和基本规律 §1.4.2 独立电源 §1.4.2 几种典型的独立源信号波形及其符号.ppt
- 上海交通大学:《电路基础》课程教学资源(PPT课件)第一章 基本概念和基本规律 §1.4.3 受控电源 §1.4.4 运算放大器 §1.4.5 理想变压器 §1.4.6 回转器 §1.4.7 负转换器.ppt