上海交通大学:《集成电路工艺原理》课程教学资源_Basic Properties of Silicon Crystals

Basic Properties of Silicon Crystals
Basic Properties of Silicon Crystals

Basic Properties of Crystals Type of crystals for silicon: Single Crystal Polycrystalline Amorphous periodic small crystals no long range arrangements order between of atoms atoms Crystal lattice is described by a unit cell with a base vector(distance between atoms) Types of unit cells Z Cubic BCC FCC Body Centered Cube Face Centered Cube
Basic Properties of Crystals Type of crystals for silicon: Single Crystal Polycrystalline Amorphous periodic small crystals no long range p y arrangements order between of atoms atoms Crystal lattice is described by a unit cell with a base vector (distance between atoms) Types of unit cells Types of unit cells Body Centered Cube Face Centered Cube

Directions and Planes in Crystals Directions (vector components:a single direction is expressed as [a set of 3 integers], equivalent directions(family)are expressed as a set of 3 integers> Planes:a single plane is expressed as(a set of 3 integers hk/=Miler indices)and equivalent planes are expressed as fa set of 3 integers Miler Indices:take x,y,z(multiple of basic vectors ex.x=4a,y=3a,z=2a) reciprocals(1/4,1/3,1/2)>common denominator(3/12,4/12,6/12)>the smallest numerators(3 4 6) [h k I]crystal direction is perpendicular lattice constant to (h k I)plane Z (100)plane a (110)plane [111] (111)plane [1001 X
Directions and Planes in Cr ystals Directions (vector components: a single direction is expressed as [a set of 3 integers], equivalent directions (family) are expressed as y equivalent directions (family) are expressed as Planes: a single plane is expressed as (a set of 3 integers h k l = Miler indices) and equivalent planes are expressed as {a set of 3 integers} Miler Indices: take x, y, z (multiple of basic vectors ex. x=4 a, y=3 a, z=2 a) reciprocals (1/4, 1/3, 1/2) Æ common denominator (3/12, 4/12, 6/12) Æ the smallest ( ) lattice constant numerators (3 4 6) [h k l] crystal direction is perpendicular to (h k l) plane

Silicon Crystal Structure Diamond lattice (Si,Ge,GaAs) Two interpenetrating FCC structures shifted by a/4 in all three directions All atoms in both FCCs ○inside one FCC O from the second lattice covalent bonding (100)Si for devices (111)Si not used-oxide chargest
Silicon Crystal Structure Diamond lattice (Si, Ge, GaAs) Two interpenetrating FCC structures shifted by a/4 in all three directions All t i b th FCC All atoms in both FCCs Diamond covalent bonding inside one FCC from the second lattice (100) Si for devices (111) Si not used - oxide charges

Silicon Surface Orientation (100) Devices are built on surface>surface orientation affects the electrical and physical properties Two commonly used crystal orientation in silicon (111)crystal plane Largest number of atoms per cm2, Oxidize fast 111) Higher density of interface states (defects) (100)crystal plane Superior electrical properties of the Lowest number of atoms per cm2 (100)Si/SiO,interface makes (100) Oxidize slow silicon dominant in manufacturing. Low density of interface states
Silicon Surface Orientation Devices are built on surface Æ surface orientation affects the electrical and physical properties (100) Two commonly used crystal orientation in silicon (111) crystal plane • Largest number of atoms per cm 2 , • Oxidize fast • Hi h d it f i t f t t (111) Hi g her density o f inter face states (defects) (100) cr ystal plane (111) ( )y p • Lowest number of atoms per cm 2 • Oxidize slow • Low density of interface states Superior electrical properties of the (100) Si/SiO 2 interface makes (100) silicon dominant in manufacturing

Defects in Silicon Crystals Point Defects Stacking Fault Dislocation Precipitate Various types of defects can exist in crystal or can be created by processing steps. Point defects: 。 Impurity related defect Native point defect Vacancy (a missing atom),Interstitial(an extra atom) Equilibrium concentration increases with T:1012-1015cm3@1000C
Defects in Silicon Crystals Point Defects V Stacking Fault – I Dislocation Precipitate Point defects: Various types of defects can exist in crystal or can be created by processing steps. Point defects: • Impurity related defect • Native point defect Vacancy (a missing atom), Interstitial (an extra atom) Equilibrium concentration increases with T: 1012-1015cm-3 @ 1000 o C

Defects in Silicon Crystals Dislocations 0000000000000 00000000000 Intrinsic point defects in 00000000000 O0O000O0O000 a crystal N and N o0000o0000ooo increase with T 业 0000000000000 0000000000000 o0o0900888000oo00 oooO 00O 88808888088899008 00000O00O0000 ●●●●●●●●● Agglomeration of 0000000000000 000000000000o6008 00008000000000000 Interstitials 号 Extrinsic-type dislocation loop. 0000000009908 90980o00o9800 O000 HOOOO o088600008886 collapse 0000000000000 Sequence of intrinsic-type dislocation loop formation. One-dimensional defects (dislocations): 。 Edge dislocation,dislocation loop Macroscopic edge dislocations stress in silicon after high temperature processes (LOCOS);temperature gradients during processing Microscopic dislocation loops agglomeration of V I during a cooling process (not enough time for V&I recombination) Dislocations can move when subjected to stresses or when excess point defects are present
Defects in Silicon Crystals – Dislocations Intrinsic point defects in a crystal N v and NI increase with T Agglomeration of Interstitials collapse One-dimensional defects (dislocations): • Edge dislocation, dislocation loop • Macroscopic edge dislocations Macroscopic edge dislocations Å stress in silicon after high temperature processes stress in silicon after high temperature processes (LOCOS); temperature gradients during processing • Microscopic dislocation loops Å agglomeration of V & I during a cooling process (not enough time for V & I recombination) • Di l i h bj d h i d f islocations can move w hen subjecte d to stresses or w hen excess point d e fects are present

Propagation of Dislocations by Climb Climb motion in an edge dislocation 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000 ● 0000099/000 00000000000 0000000000 b 00000●00000 Shift 00000100000 00000●00000 0000000000 。。00010.00。 0000000000 0000000000 00000000c0 0000000000 Negative climb by absorbing self-interstitials 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000 00000000.000 0000000°,°00 00000006000 b 00 00000●6000 00000 00●00 Shift 00000●60000 0000000000 00000100000 0000000000 0000000000 0000000000 0000000000 .0000000000 Positive climb by capturing vacancies
Propagation of Dislocations by Climb Climb motion in an edge dislocation Shift Negative climb by absorbing self-interstitials Shift Positive climb by capturing vacancies

Motion of Dislocations by Glide Movement of a dislocation by glide in response to shear stress Shear Stress Easy motion of Stress induced by dislocations Mismatch of thermal expansion coefficients Temperature gradient AT g=aY△T
Motion of Dislocations by Glide Movement of a dislocation by glide in response to shear stress St i d d b Easy motion of dislocations Stress in duce d by • Mismatch of thermal expansion coefficients • Tem p g erature gradient ∆ T σ = αY∆ T

Defects in Silicon Crystals Stacking Faults 【111 [001 A A.B.C:three different a b [1i1 (111)planes B b' Perfect stacking c c B Stacking of(111)planes viewed along [110]in the diamond structure ESF Induced by oxidation ISF Missing(111)plane B [111】 001] SFs bound by →[i011 dislocations Two-dimensional defects(stacking faults): Along {111)planes Intrinsic:removal of part of a plane of atoms in {111)directions Extrinsic:addition of a partial plane of atoms in (111)directions Oxidation induced stacking faults(OISF):stacking faults grow during oxidation due to absorption of more I
Defects in Silicon Crystals – Stacking Faults A, B, C: three different Perfect stacking (111) planes Induced by oxidation Missing (111) plane SFs bound by dislocations Two-di i l d f t ( t ki f lt ) dimensional d e fects (stacking fault s): • Along {111} planes • Intrinsic: removal of part of a plane of atoms in {111} directions • Extrinsic: addition of a p p {} artial plane of atoms in {111} directions • Oxidation induced stacking faults (OISF): stacking faults grow during oxidation due to absorption of more I
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)多传感器信息融合.ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)传感器集成技术基础.ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)智能传感器的发展及应用.ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)绪论 Intelligent Sensor System(主讲:栾楠).ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)传感器与检测技术 Sensor and Measure.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第七章 光接收机.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第六章 光检测器.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第五章 光功率发射和耦合.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第四章 光源.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第三章 光纤的损耗和色散.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第一章 概述(叶通).ppt
- 上海交通大学:《信号与系统 Signals and Systems(B类)》教学资源_课程教学大纲(徐昌庆).doc
- 上海交通大学:《信号与系统 Signals and Systems(B类)》教学资源_信号与系统实验.doc
- 上海交通大学:《信号与系统 Signals and Systems(B类)》教学资源_EI210 Lecture Notes Chapter 2(Part I)Linear Time-Invariant Systems.ppt
- 上海交通大学:《信号与系统 Signals and Systems(B类)》教学资源_EI210 Lecture Notes Chapter 1(Part II)Signals and Systems.ppt
- 上海交通大学:《信号与系统 Signals and Systems(B类)》教学资源_EI210 LECTURE NOTES Chapter 1(Part I)Signals and Systems.ppt
- 上海交通大学:《通信基本电路》课程教学资源(讲义)§9.6 二极管小信号检波器 §9.7 同步检波.ppt
- 上海交通大学:《通信基本电路》课程教学资源(讲义)§9.3 高电平调幅电路 9.3.1 集电极调幅电路 9.3.2 基极调幅 §9.4 调幅信号的解调.ppt
- 上海交通大学:《通信基本电路》课程教学资源(讲义)§9.2 低电平调幅电路 9.2.1 单二极管开关状态调幅电路 9.2.2 二极管平衡调幅电路 9.2.3 二极管环形调幅电路.ppt
- 上海交通大学:《通信基本电路》课程教学资源(讲义)第六章 高频功率放大器 §6.1 概述 §6.2 谐振式高频功率放大器的工作原理 §6.3 谐振功率放大器的折线分析法.ppt
- 上海交通大学:《现代通信网》课程教学资源(讲义)DELAY MODELS IN&DATA NETWORKS.pdf
- 上海交通大学:《现代通信网》课程教学资源(讲义)M/G/1 QUEUE.pdf
- 上海交通大学:《现代通信网》课程教学资源(讲义)RESERVATION SYSTEMS, PRIORITY QUEUEING AND SYSTEM STABILITY.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Point-to-Point Protocols and Links.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Flow Control.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Introduction and Layered Network Architecture.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Multiaccess Communication.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Delay Models in Data Networks.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Routing in Data Networks.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_DspLab2019.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Exam Solutions_test.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch0_introduction.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch10 FIR.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch11 IIR.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch1_Review for Signal and System.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch3_Discrete-Time Signals and Systems.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch4_FIR filtering and convolution.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch6_Transfer Functions.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch7_Digital Filter Realization.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch9 DFT.pdf