上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch10 FIR

Digital Signal Processing 主讲:张君 上文大
Digital Signal Processing 主讲:张君

Characteristics of practical frequency-selective filters Digital Signal Processing--FIR Digital Filter Design IH(@)l 1+61 1-81 δ1~Passband ripple 82~Stopband ripple Passband ripple p~Passband edge frequency @Stopband edge frequency Stopband Transition 82 band Qp D π Figure 10.1.2 Magnitude characteristics of physically realizable filters. 上游充通大
Digital Signal Processing—— FIR Digital Filter Design Characteristics of practical frequency-selective filters

Digital Filter Design Digital Signal Processing--FIR Digital Filter Design The filter design problem is the problem of constructing the transfer function of a filter that meets prescribed frequency response specifications. FIR Filter *advantage linear phase property ·stability disadvantage ·long filter length most computation cost IIR Filter 上游充通大学
Digital Signal Processing—— FIR Digital Filter Design Digital Filter Design The filter design problem is the problem of constructing the transfer function of a filter that meets prescribed frequency response specifications. FIR Filter advantage • linear phase property • stability disadvantage • long filter length • most computation cost IIR Filter

Digital Filter Classification Digital Signal Processing--FIR Digital Filter Design A filter's structure is probably the most common method of Digital Filter classification. That is Infinite Impulse Response Digital Filter(IIR)and Finite Impulse Response Digital Filter(FIR): bz H(z)= r=0 1+ ∑a4zt k=1 H(z)= h(n)z n=0 上浒充通大¥
Digital Signal Processing—— FIR Digital Filter Design Digital Filter Classification A filter's structure is probably the most common method of Digital Filter classification. That is Infinite Impulse Response Digital Filter(IIR) and Finite Impulse Response Digital Filter (FIR) : 0 1 1 0 ( ) 1 ( ) ( ) M r r r N k k k N n n b z H z a z H z h n z

Ideal Filter Digital Signal Processing--FIR Digital Filter Design Lowpass H() -2π 一元 0 2π Highpass (e 0 -2元 一元 0 2w Bandpass H() -0 -2元 一元 0 2π Bandstop He -2元 一元 0 2元 Fig 10.1.1 ideal Lowpass Highpass,Bandpass Bandstop Magnitude Response 上游充通大学
Digital Signal Processing—— FIR Digital Filter Design Ideal Filter Fig 10.1.1 ideal Lowpass、Highpass、Bandpass、Bandstop Magnitude Response (e ) j H (e ) j H (e ) j H (e ) j H 0 Lowpass 0 Highpass 0 Bandpass 0 Bandstop 2π 2π 2π 2π ππππ π π π π 2π 2π 2π 2π

Ideal Filter Digital Signal Processing--FIR Digital Filter Design Dl@)- -8 |o≤0 .The frequency characteristics are ,o.≤o≤π periodic and even functions. dp(k)=sin(@k)/() .Phase are all considered zero. D:@)= ≤0 如 .Sharp edges at cutoff frequencies dnp(k)=6(k)-sin(@k)/(k) Infinite length sequences are all even (or symmetrical)and real-valued 1, 0。≤⊙≤0 Dgp(@)= o,≤⊙≤π functions. 0 0≤ld≤oa .High pass filter equals to all pass filter dpp(k)= sin(;k)-sin(@k) minus low pass filter 水 0 0。≤⊙≤0 Band pass equals to one low pass filter o,≤⊙≤π minus the other low pass filter. 0≤o≤oa Band stop filter equals to all pass filter dps(k)=5(k)- sin(k)-sin(@k 水 minus band pass filter 上游克通大
Digital Signal Processing—— FIR Digital Filter Design Ideal Filter •The frequency characteristics are periodic and even functions. •Phase are all considered zero. •Sharp edges at cutoff frequencies •Infinite length sequences are all even (or symmetrical) and real-valued functions. •High pass filter equals to all pass filter minus low pass filter •Band pass equals to one low pass filter minus the other low pass filter. •Band stop filter equals to all pass filter minus band pass filter

Ideal Filter Digital Signal Processing--FIR Digital Filter Design Differentiator .The frequency characteristics are D(@)=jo periodic and odd functions. dlk)=cos(a)_sin() .Only imaginary part occurs. k 2 .Infinite length sequences are both odd (or antisymmetrical)and real- Hilbert transformer valued functions. D(o)=-jsign(o) Both filters have d(0)=0. d(k)=1-cos(k) .All have linear phase property. 永 ↑D(O)j D(o)j differentiator ① 0 一π 0 Hilbert transformer 上浒充通大
Digital Signal Processing—— FIR Digital Filter Design Ideal Filter •The frequency characteristics are periodic and odd functions. •Only imaginary part occurs. •Infinite length sequences are both odd (or antisymmetrical) and realvalued functions. •Both filters have d(0)=0. •All have linear phase property. Differentiator Hilbert transformer

Design of linear-phase FIR filters using windows Digital Signal Processing--FIR Digital Filter Design H,(o)=∑h,(n)em h(n)=w(n)d (n -M) 1=0 h,(m)=2元H,(@)edo @)=nww-aewpw)g aamro-ale- h(n)=ha(n)w(n) (time domain) h(n),n=0,1,,M-1 0, otherwise 上游充通大
Digital Signal Processing—— FIR Digital Filter Design Design of linear-phase FIR filters using windows h(n)= w(n)d(n − M)

Rectangular windowing function Digital Signal Processing--FIR Digital Filter Design .Its spectrum W(w) w(n)= 0≤n≤N-1 >The period is w=2T. 0 otherwise >The height of the main lobe is N-1 m,(e)= 1-w N and its bottom width is 4T/N. 1=0 1-1 >The height of the first side lobe N is about 2N/3TTat w=3TT/N. W(o)= ∑ea sin(No/2 e-j(N-1)o/2 n=0 sin(@/2) >The attenuation of side lobe is approximately 13dB. H(o)= in(No/2) >The zero-cross points are sim(o/2) ωk=2kTN,k=士1,±2,, ↑H(o) ±(N-1). .Frequency leakage:because of sharp transition of window edges. .Frequency resolution:because of the 2T/N3dB-width of the main lobe. 上浒究通大粤
Digital Signal Processing—— FIR Digital Filter Design Rectangular windowing function •Its spectrum W(ω) The period is ω=2π. The height of the main lobe is N and its bottom width is 4π/N. The height of the first side lobe is about 2N/3πat ω=3π/N. The attenuation of side lobe is approximately 13dB. The zero-cross points are ωk=2kπ/N, k=±1, ±2,…, ±(N-1). •Frequency leakage: because of sharp transition of window edges. •Frequency resolution: because of the 2π/N3dB-width of the main lobe

Design of linear-phase FIR filters using windows Digital Signal Processing--FIR Digital Filter Design dk)=」Dw) -M≤k≤M 2π d=[d-M,...,d-2,d-1,do,di,d2,...,dm] h=d=[ho,...,hm-2,hM-1,hM,hM+1,hM+2,...,h2m] h(n)=d(n-M),n=0,1,.,N-1 rectangular ◆dk) ◆h(n) rectangular window window w(n) ●● ●最 …-5-4-3-2-1012345…k -2-10123456789…n 上府元通大¥
Design of linear-phase FIR filters using windows Digital Signal Processing—— FIR Digital Filter Design
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch0_introduction.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Exam Solutions_test.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_DspLab2019.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Routing in Data Networks.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Delay Models in Data Networks.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Multiaccess Communication.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Introduction and Layered Network Architecture.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Flow Control.pdf
- 《现代通信网》课程教学资源(参考教材)Data Networks(Second Edition)Point-to-Point Protocols and Links.pdf
- 上海交通大学:《现代通信网》课程教学资源(讲义)RESERVATION SYSTEMS, PRIORITY QUEUEING AND SYSTEM STABILITY.pdf
- 上海交通大学:《现代通信网》课程教学资源(讲义)M/G/1 QUEUE.pdf
- 上海交通大学:《现代通信网》课程教学资源(讲义)DELAY MODELS IN&DATA NETWORKS.pdf
- 上海交通大学:《集成电路工艺原理》课程教学资源_Basic Properties of Silicon Crystals.pdf
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)多传感器信息融合.ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)传感器集成技术基础.ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)智能传感器的发展及应用.ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)绪论 Intelligent Sensor System(主讲:栾楠).ppt
- 上海交通大学:《智能传感器系统》课程教学资源(PPT课件)传感器与检测技术 Sensor and Measure.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第七章 光接收机.ppt
- 上海交通大学:《光纤通信系统与设计》教学资源(PPT课件)第六章 光检测器.ppt
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch11 IIR.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch1_Review for Signal and System.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch3_Discrete-Time Signals and Systems.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch4_FIR filtering and convolution.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch6_Transfer Functions.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch7_Digital Filter Realization.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch9 DFT.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_ch9 FFT.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Handouts_dsp3-9章中文版.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec02.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec03.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec04.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec05.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec06.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec08.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec09.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec15.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec16.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec17.pdf
- 上海交通大学:《数字信号处理 Digital Signal Processing(B)》教学资源_Reference Book_DSP of MIT_lec18.pdf