并行处理(PPT讲稿)Parallel Processing - Hypercubes and Their Algorithms

Hypercubes and Their algorithms Study the hypercube and its topologicallalgorithmic properties Develop simple hypercube algorithms(more in Ch. 14) Learn about embeddings and their usefulness Topics in This Lecture 13.1 Definition and Main Properties 13.2 Embeddings and Their Usefulness 13.3 Embedding of Arrays and Trees 14.5 Broadcasting in Hypercube 14.6 Adaptive routing in Hypercube 15 Inverting a Lower-Triangular Matrix Fa2010 Parallel Processing, Low-Diameter Architectures Slide 4
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 4 Hypercubes and Their Algorithms Study the hypercube and its topological/algorithmic properties: • Develop simple hypercube algorithms (more in Ch. 14) • Learn about embeddings and their usefulness Topics in This Lecture 13.1 Definition and Main Properties 13.2 Embeddings and Their Usefulness 13.3 Embedding of Arrays and Trees 14.5 Broadcasting in Hypercube 14.6 Adaptive routing in Hypercube 15 Inverting a Lower-Triangular Matrix

13.1 Definition and main properties P P P Intermediate architectures logarithmic or sublogarithmic diameter P Begin studying networks that are intermediate between diameter -1 complete network and diameter-p12 mesh Sublogarithmic diameter Superlogarithmic diameter 2 log n/loglog n log n n/2 n Complete PDN Star Binary tree Torus Ring Linear network pancake hypercube arr ray Fa2010 Parallel Processing, Low-Diameter Architectures Slide 5
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 5 13.1 Definition and Main Properties P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 0 P P P P P P P P P 0 1 2 3 4 5 6 7 8 Intermediate architectures: logarithmic or sublogarithmic diameter Begin studying networks that are intermediate between diameter-1 complete network and diameter-p 1/2 mesh Complete network 1 2 log n / log log n log n n n/2 n − 1 Sublogarithmic diameter Superlogarithmic diameter PDN Star, pancake Binary tree, hypercube Torus Ring Linear array

Hypercube and Its History Binary tree has logarithmic diameter, but small bisection Hypercube has a much larger bisection Hypercube is a mesh with the maximum possible number of dimensions 2×2×2 2 9= log p We saw that increasing the number of dimensions made it harder to design and visualize algorithms for the mesh Oddly, at the extreme of log2 p dimensions things become simple again Brief history of the hypercube(binary g-cube)architecture Concept developed: early 1960s [Squi63 Direct(single-stage)and indirect(multistage)versions: mid 1970s Initial proposals[Peas771, [Sull77]included no hardware Caltech's 64-node Cosmic Cube: early 1980s [ Seit85 Introduced an elegant solution to routing(wormhole switching) Several commercial machines mid to late 1980s Intel PSc (personal supercomputer), CM-2, nCUBE(Section 22. 3) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 6
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 6 Hypercube and Its History Binary tree has logarithmic diameter, but small bisection Hypercube has a much larger bisection Hypercube is a mesh with the maximum possible number of dimensions 2 2 2 . . . 2 ⎯ q = log2 p ⎯→ We saw that increasing the number of dimensions made it harder to design and visualize algorithms for the mesh Oddly, at the extreme of log2 p dimensions, things become simple again! Brief history of the hypercube (binary q-cube) architecture Concept developed: early 1960s [Squi63] Direct (single-stage) and indirect (multistage) versions: mid 1970s Initial proposals [Peas77], [Sull77] included no hardware Caltech’s 64-node Cosmic Cube: early 1980s [Seit85] Introduced an elegant solution to routing (wormhole switching) Several commercial machines: mid to late 1980s Intel PSC (personal supercomputer), CM-2, nCUBE (Section 22.3)

Basic Definitions 0 Hypercube is generic term;(a)Binary 1-cube (b)Binary 2-cube 3-cube, 4-cube,., g-cube built of two built of tw binary o-cubes binary 1-cubes, labeled o and 1 labeled 0 and 1 In specifIc cases Fig.13.1 The recursive structure of binary hypercubes (c)Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1 Parameters: 2q 0 B=0/2=291 D=g=log2p d=g= log2p (d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1 Fa2010 Parallel Processing, Low-Diameter Architectures Slide 7
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 7 Basic Definitions Hypercube is generic term; 3-cube, 4-cube, . . . , q-cube in specific cases 0 1 00 01 10 11 (a) Binary 1-cube, built of two binary 0-cubes, labeled 0 and 1 (b) Binary 2-cube, built of two binary 1-cubes, labeled 0 and 1 0 1 (c) Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1 0 000 001 010 011 100 101 110 111 1 000 001 010 011 100 101 110 111 (d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1 0 1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Fig. 13.1 The recursive structure of binary hypercubes. Parameters: p = 2q B = p/2 = 2q–1 D = q = log2p d = q = log2p

The 64-node Hypercube Only sample wraparound links are shown to avoid clutter amorphic to the4×4×4 3D torus (each has 64×6/2 links) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 8
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 8 Only sample wraparound links are shown to avoid clutter The 64-Node Hypercube Isomorphic to the 4 4 4 3D torus (each has 64 6/2 links)

Neighbors of a Node in a Hypercube q-14q-2…X2X1X iD of node x q-1q2…x2X1x0 dimension-0 neighbor; No(X) q-1q2…X2X1 Xo dimension-1 neighbor N,X) The neighbors of node x ⅩX1X q dimension-(g-1)neighbor; Na-1(x) 0100 Dim o Nodes whose labels differ in k bits Dim 3 (at Hamming distance k) connected Dim 2 1100 by shortest path of length k 0000 Dim 110 Both node-and edge-symmetric l111 Strengths: symmetry, log diameter, 0110 and linear bisection width 0111 Weakness: poor scalability 1010101 Fa2010 Parallel Processing, Low-Diameter Architectures Slide 9
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 9 Neighbors of a Node in a Hypercube xq–1xq–2 . . . x2x1x0 ID of node x xq–1xq–2 . . . x2x1x0 dimension-0 neighbor; N0 (x) xq–1xq–2 . . . x2x1 x0 dimension-1 neighbor; N1 (x) . . . . . . xq–1 xq–2 . . . x2x1x0 dimension-(q–1) neighbor; Nq–1 (x) The q neighbors of node x Nodes whose labels differ in k bits (at Hamming distance k) connected by shortest path of length k Both node- and edge-symmetric Strengths: symmetry, log diameter, and linear bisection width Weakness: poor scalability Dim 0 Dim 1 Dim 2 Dim 3 0100 0101 0110 0000 1100 1101 1111 0111 0011 x 1011 0010 1010 x

13.2 Embeddings and Their Usefulness Dilation Congestion 5Fig.132 \b Load tactor= Embedding a even-node 0 2 binary tree f into 2D 3」|4 meshes of Various sizes Dilation 2 Dilation Congestion =2 Congestion =2 Load factor Load factor s b「 Expansion: tio of the number of e nodes(9/7,8/7 3 4 5 and 4/7 here) Dilation: Longest path onto which an edge is mapped (routing slowdown) Congestion Max number of edges mapped onto one edge(contention slowdown) Load factor: Max number of nodes mapped onto one node(processing slowdown) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 10
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 10 Dilation: Longest path onto which an edge is mapped (routing slowdown) Congestion: Max number of edges mapped onto one edge (contention slowdown) Load factor: Max number of nodes mapped onto one node (processing slowdown) 13.2 Embeddings and Their Usefulness Fig. 13.2 Embedding a seven-node binary tree into 2D meshes of various sizes. 0 2 3 4 1 5 6 0 2 3 4 1 6 5 0,1 2 4 3 6 5 6 1 0 3,4 2,5 a b c d e f a b c d e f a b c d e f b c, d f Dilation = 1 Congestion = 1 Load factor = 1 Dilation = 2 Congestion = 2 Load factor = 1 Dilation = 1 Congestion = 2 Load factor = 2 Expansion: ratio of the number of nodes (9/7, 8/7, and 4/7 here)

13.3 Embedding of Arrays and Trees g-1)-bit O Gray code 0000...000 0000...001 Ng((x) 0000...011 0100...000 q-Dcube 0 (q-1]ube 1 1:100...000 Fig. 13.3 Hamiltonian cycle in the g-cube Alternate inductive proof: Hamiltonicity of the q-cube 000...011 is equivalent to the existence of a g-bit Gray code 1000...010 000...000 Basis: q-bit Gray code beginning with the all-Os codeword (9-1)-bit and ending with 10q-1 exists for g= 2: 00, 01, 11, 10 Gray code In reverse Fa2010 Parallel Processing, Low-Diameter Architectures Slide 11
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 11 13.3 Embedding of Arrays and Trees Alternate inductive proof: Hamiltonicity of the q-cube is equivalent to the existence of a q-bit Gray code Fig. 13.3 Hamiltonian cycle in the q-cube. (q ?1)-cube 0 x (q ?1)-cube 1 N (x) k N (x) q? N (N (x)) q? k (q – 1)-bit Gray code 000 . . . 000 000 . . . 001 000 . . . 011 . . . 100 . . . 000 0 0 0 0 1 1 1 1 100 . . . 000 . . . 000 . . . 011 000 . . . 010 000 . . . 000 (q – 1)-bit Gray code in reverse Basis: q-bit Gray code beginning with the all-0s codeword and ending with 10q–1 exists for q = 2: 00, 01, 11, 10 q (q -1) q (q -1)

Mesh/Torus Embedding in a Hypercube Dim 2 Column 3 Column Column Dim o Column o Fig 13.5 The 4 x 4 mesh/torus is a subgraph of the 4-cube Is a mesh or torus a subgraph of the hypercube of the same size? We prove this to be the case for a torus(and thus for a mesh) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 12
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 12 Mesh/Torus Embedding in a Hypercube Is a mesh or torus a subgraph of the hypercube of the same size? Dim 0 Dim 1 Dim 2 Dim 3 Column 0 Column 1 Column 2 Column 3 Fig. 13.5 The 4 4 mesh/torus is a subgraph of the 4-cube. We prove this to be the case for a torus (and thus for a mesh)

Torus is a subgraph of same-size Hypercube O a A tool used in our proof Ob 3-by-2 Product graph G1×G2 Hasn1×n2 nodes Each node is labeled by a pair of labels, one from each component graph Two nodes are connected if either component of the two nodes were connected in the component graphs Fig 13. 4 Examples of product graphs The 2a x 2x 2C. torus is the product of 2a, 2b, 2C ,. node rings The(a+ b+c+.)-cube is the product of a-cube, b-cube, c-cube, The 2q-node ring is a subgraph of the g-cube If a set of component graphs are subgraphs of another set, the product graphs will have the same relationship Fa2010 Parallel Processing, Low-Diameter Architectures Slide 13
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 13 Torus is a Subgraph of Same-Size Hypercube A tool used in our proof Product graph G1 G2 : Has n1 n2 nodes Each node is labeled by a pair of labels, one from each component graph Two nodes are connected if either component of the two nodes were connected in the component graphs Fig. 13.4 Examples of product graphs. The 2 a 2 b 2 c . . . torus is the product of 2 a -, 2 b -, 2 c -, . . . node rings The (a + b + c + ... )-cube is the product of a-cube, b-cube, c-cube, . . . The 2 q -node ring is a subgraph of the q-cube If a set of component graphs are subgraphs of another set, the product graphs will have the same relationship = 3-by-2 torus = = 0 1 2 a b 0a 1a 2a 0b 1b 2b
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机网络》课程电子教案(PPT课件讲稿)第2章 数据通信的基础知识.ppt
- 《Excel高级应用》课程教学资源:课程教学大纲.doc
- 新乡学院:《办公自动化》课程教学资源(教学大纲).pdf
- 《视频制作》课程教学资源:课程教学大纲.doc
- 上海师范大学:《R语言与统计分析》课程教学资源(PPT课件)R语言——介绍(主讲:汤银才).ppt
- 南京大学:移动Agent系统支撑(PPT讲稿)Agent Mobility Software Agent(主讲:余萍).pptx
- 赣南师范大学:《计算机网络原理》课程教学资源(PPT课件讲稿)第四章 数据链路层.ppt
- 上海交通大学:《Multicore Architecture and Parallel Computing》课程教学资源(PPT课件讲稿)Lecture 8 CUDA, cont’d.ppt
- 东南大学:《操作系统概念 Operating System Concepts》课程教学资源(PPT课件讲稿)06 Process synchronization.ppt
- 河南中医药大学:《数据库原理》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第4章 存储层次结构设计.ppt
- 西安交通大学:《网络与信息安全》课程PPT教学课件(网络入侵与防范)第一章 网络安全概述(主讲:沈超、刘烃).ppt
- 《管理信息系统》课程教学资源(PPT课件讲稿)第16章 新型数据库技术及发展.ppt
- 北京大学:《软件需求工程》课程教学资源(PPT课件讲稿)第三章 软件需求获取(主讲:周立新).ppt
- 电子工业出版社:《计算机网络》课程教学资源(第六版,PPT课件讲稿)第三章 数据链路层.pptx
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第四章 指令系统及汇编语言程序设计(4.1-4.6).ppt
- 西北农林科技大学:高性能计算之并行编程技术(讲座PPT,报告人:周兆永).ppt
- 《计算机操作系统》课程教学资源(PPT课件讲稿)第8章 计算机系统的测试.ppt
- 数据包检测技术(PPT讲稿)High-Performance Pattern Matching for Intrusion Detection.ppt
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)图像成像机理与模型.pptx
- 《计算机网络》课程教学资源(PPT课件讲稿)第8章 应用层.ppt
- 香港城市大学:PROGRAMMING METHODOLOGY AND SOFTWARE ENGINEERING.ppt
- 《计算机操作系统》课程教学资源(PPT课件讲稿)第二章 进程描述与控制 Process Concept & Process Control.ppt
- 佛山科学技术学院:《网络技术基础》课程教学资源(专业技能考试大纲).doc
- 四川大学:《数据结构》课程教学资源(PPT课件讲稿)第五章 树和二叉树 Tree & Binary Tree.ppt
- 2019年《计算机网络》考试大纲.doc
- 计算机算法(PPT讲稿)禁忌搜索算法 Tabu Search.ppt
- 北京航空航天大学:《数据挖掘——概念和技术(Data Mining - Concepts and Techniques)》课程教学资源(PPT课件讲稿)Chapter 05 Mining Frequent Patterns, Association and Correlations.ppt
- 电子科技大学:《计算机操作系统》课程教学资源(PPT课件讲稿)第二章 进程与调度(Processes and Scheduling).ppt
- 交互式数据语言(PPT讲稿)Basic IDL knowledge.ppt
- 江苏海洋大学(淮海工学院):《Java面向对象程序设计》课程教学资源(PPT课件讲稿)全国二级Java考试的重点难点.pptx
- 长春工业大学:《Javascript 程序设计》课程教学资源(PPT课件讲稿)第8章 网页特效 JavaScript.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第三章 CPU子系统.ppt
- 南京大学:移动Agent系统支撑(PPT讲稿)Mobile Agent Communication——Software Agent.pptx
- PROGRAMMING METHODOLOGY AND SOFTWARE ENGINEERING.ppt
- 《SQL Server 2000数据库教程》教学资源(PPT课件讲稿)第11章 数据库安全性管理.ppt
- 白城师范学院:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第五章 数据库完整性.pptx
- 香港城市大学:《计算机图形学》课程教学资源(PPT课件讲稿)图的算法 Graph Algorithms.ppt
- 《The C++ Programming Language》课程教学资源(PPT课件讲稿)Lecture 07 Exception Handling.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第9章 用户自己建立数据类型.pptx