中国矿业大学:密码学_Public Key Cryptography

Public Key cryptography 曹天杰 Tianjie Cao ticao(cumt. edu. cn College of Computer science and echnology, China University of Mining and Technology Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.2
1 曹天杰 Tianjie Cao tjcao@cumt.edu.cn College of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.2 Public Key Cryptography

Diffie-Hellman Diffie-hellman is a public key distribution scheme First public-key type scheme, proposed in 1976 WDiffie Me Hellman. "New directions ir Cryptography", IEEE Trans. Information Theory, IT-22, pp644-654, Nov 1976 2
2 Diffie-Hellman • Diffie-Hellman is a public key distribution scheme • First public-key type scheme, proposed in 1976. – W Diffie, M E Hellman, "New directions in Cryptography", IEEE Trans. Information Theory, IT-22, pp644-654, Nov 1976

whitfield Diffie Martin Hellman
3

Diffie-Hellman Public-key distribution scheme Cannot be used to exchange an arbitrary message Exchange only a key, whose value depends on the participants(and their private and public key information) The algorithm is based on exponentiation in a finite(Galois) field, either over integers modulo a prime, or a polynomial field
4 Diffie-Hellman • Public-key distribution scheme • Cannot be used to exchange an arbitrary message • Exchange only a key, whose value depends on the participants (and their private and public key information) • The algorithm is based on exponentiation in a finite (Galois) field, either over integers modulo a prime, or a polynomial field

Diffie-Hellman Security relies on the difficulty of computing logarithms in these fields discrete logarithms takes O(e log n log log n)operations The algorithm two people alice and bob who wish to exchange some key over an insecure communications channe They select a large prime p(200 digit), such as(p )2 should also be prime They also select g, a primitive root mod p g is a primitive if for each n from 0 to p-l, there exists some a where ga=n mod p
5 Diffie-Hellman • Security relies on the difficulty of computing logarithms in these fields – discrete logarithms takes O(e log n log log n) operations • The algorithm: – two people Alice and Bob who wish to exchange some key over an insecure communications channel. – They select a large prime p (~200 digit), such as (p- 1)/2 should also be prime – They also select g, a primitive root mod p • g is a primitive if for each n from 0 to p-1, there exists some a where ga = n mod p

Diffie-Hellman · The algorithn The values of g and p dont need to be secret Alice then chooses a secret number a Bob also chooses a secret number b Alice and Bob compute ya and yg respectively, which are then exchanged ya -ga mod p yB= moc Both alice and bob can calculate the key as KaR=gab mod p yab mod p( which B can compute) b mod p (which A can compute) The key may then be used in a private-key cipher to secure communications between a and B
6 Diffie-Hellman • The algorithm – The values of g and p don’t need to be secret – Alice then chooses a secret number a – Bob also chooses a secret number b – Alice and Bob compute yA and yB respectively, which are then exchanged • yA = ga mod p yB = gb mod p – Both Alice and Bob can calculate the key as • KAB = gab mod p = yA b mod p (which B can compute) = yB a mod p (which A can compute) – The key may then be used in a private-key cipher to secure communications between A and B

Diffie-Hellman alice a mod p Bob g mod The private key is: gab mod p where p is a prime and g is a generator of Z
7 Alice g a mod p Bob g b mod p The private key is: g ab mod p where p is a prime and g is a generator of Zp Diffie-Hellman

Diffie-Hellman Knows ga, gb, g, and p So we want to find the key k b This is believed to be hard If one knows how to compute discrete logs efficient ntly then one can break this scheme (and other schemes based on public key cryptography)
8 • Knows g a , gb , g, and p • So we want to find the key, k – k = gab – This is believed to be hard. • If one knows how to compute discrete logs efficiently, then one can break this scheme (and other schemes based on public key cryptography) Diffie-Hellman

Diffie-Hellman Can be expanded to be used with many parties · Can be extended to: Finite fields gFp Elliptic curves Galois field GF2 Computing discrete logarithms is closely related to factoring. If you can solve the discrete logarithm problem. the len you can factor. (The converse has never been proven to be true
9 Diffie-Hellman • Can be expanded to be used with many parties • Can be extended to: – Finite fields GFp – Elliptic curves – Galois field • Computing discrete logarithms is closely related to factoring. If you can solve the discrete logarithm problem, then you can factor. (The converse has never been proven to be true.) GF k 2

El Gamal a variant of the Diffie-Hellman key distribution scheme, allowing secure exchange of messages Published in 1985 by Elgamal in T ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms IEEE Trans. Information Theory, vol IT-31(4), pp469 472,July1985 Like Diffie-Hellman its security depends on the difficulty of factoring logarithms
10 El Gamal • A variant of the Diffie-Hellman key distribution scheme, allowing secure exchange of messages • Published in 1985 by ElGamal in – T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms", IEEE Trans. Information Theory, vol IT-31(4), pp469- 472, July 1985. • Like Diffie-Hellman its security depends on the difficulty of factoring logarithms
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国矿业大学:密码学_Public Key Cryptography.ppt
- 中国矿业大学:《密码学》PPT教学课件(曹天杰).ppt
- 中国矿业大学:密码学_Outline.ppt
- 中国矿业大学:密码学_NTHEORY2(Group Theory and Number Theory for Cryptology).ppt
- 中国矿业大学:密码学_LECTURE3.ppt
- 中国矿业大学:密码学_Hash Functions.ppt
- 中国矿业大学:密码学_Digital Signature.ppt
- 中国矿业大学:密码学_CRYPTO12(Number Theory).ppt
- 中国矿业大学:密码学_Block ciphers-L&D(Linear and Differential Cryptanalysis).ppt
- 中国矿业大学:密码学_Block ciphers-DES(DATA ENCRYPTION STANDARD).ppt
- 中国矿业大学:密码学_Block ciphers-AES(Advanced Encryption Standard).ppt
- 中国矿业大学:密码学_authentication protocol.ppt
- 湖北工业大学:《数据结构》第9章 排序(2/2).ppt
- 湖北工业大学:《数据结构》第9章 排序(1/2).ppt
- 湖北工业大学:《数据结构》第8章 图(2/2).ppt
- 湖北工业大学:《数据结构》第8章 图(1/2).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(5/5).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(4/5).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(3/5).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(2/5).ppt
- 中国矿业大学:密码学_security protocols.ppt
- 《LaTeX2e1》参考书籍PDF电子版:附录A书信的编辑.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录B参数文献数据库的处理.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录CTX程序设计.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录D扩展X.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录E 计算机现代字体.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第一章 简介.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第二章 命令与环境.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第三章 文档的布局与组织.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第四章 显示文本.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第五章 数学公式.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第六章 图形.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第七章 用户定制TEX.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第八章 高级功能.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第九章 错误消息.pdf
- MIS《管理信息系统概论》教材PPT教学课件(主编:张宽海,共六章).ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第1章 总论(杨宪泽).ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第2章 相关知识表示方法.ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第3章 产生式系统及其搜索方法.ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第4章 机器翻译部分(机器翻译方法).ppt