中国矿业大学:密码学_security protocols

Security protocols 曹天杰 Tianjie Cao ticao(cumt. edu. cn College of Computer science and echnology, China University of Mining and Technology Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.9
1 Security Protocols 曹天杰 Tianjie Cao tjcao@cumt.edu.cn College of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.9

secret splitting Problem You are the ceo of coca-cola, you are esponsible for bringing a refreshing taste to zillions of people all over the world, but want to keep the recipe secret from Pepsis industrial spies. You could tell your most trusted employees they could defect to the opposition they could fall to rubber hose cryptanalysis How can we split a secret among two parties where each piece by itself is useless?
2 secret splitting Problem: • You are the CEO of Coca-Cola. You are responsible for bringing a refreshing taste to zillions of people all over the world, but want to keep the recipe secret from Pepsi’s industrial spies. • You could tell your most trusted employees – they could defect to the opposition – they could fall to rubber hose cryptanalysis • How can we split a secret among two parties where each piece by itself is useless?

secret splitting Algorithm: Assume Trent wishes to protect the message m Trent generates a random bit string r, the same length m Trent computes m=s Trent gives Alice r Trent gives Bob s Each of the pieces is called a shadow To reconstruct m, alice and bob xor their shadows together. If r is truly random the system is perfectly secure OTP) To extend the scheme to n people generate n random bit strings e. g.m⊕rs⊕t=u
3 secret splitting Algorithm: Assume Trent wishes to protect the message m: Trent generates a random bit string r, the same length m. Trent computes m r = s Trent gives Alice r Trent gives Bob s • Each of the pieces is called a shadow. • To reconstruct m, Alice and Bob XOR their shadows together. • If r is truly random, the system is perfectly secure (OTP). • To extend the scheme to n people, generate n random bit strings e.g. m r s t = u

secret sharing Problem You are responsible for a small third world country's nuclear weapons program You want to ensure that no single lunatic can launch a missile You want to ensure that no two lunatics can collude to launch a missille You want at least three of five officers to be lunatics before a missile can be launched We call this a 35 threshold scheme
4 secret sharing Problem: • You are responsible for a small third world country’s nuclear weapons program. • You want to ensure that no single lunatic can launch a missile. • You want to ensure that no two lunatics can collude to launch a missile. • You want at least three of five officers to be lunatics before a missile can be launched. • We call this a (3,5) threshold scheme

Threshold Scheme Users and a threshold d Any group of d or more users can jointly obtain the secret Any group of d-1 or less users can not jointly obtain any information about the secret assume we have a dealer here who has the secret
5 Threshold Scheme • N users and a threshold d • Any group of d or more users can jointly obtain the secret • Any group of d-1 or less users can not jointly obtain any information about the secret • Assume we have a dealer here who has the secret

(N, 1)-(N, M scheme (N, 1: Make N copies of the secret and give each user a copy (N, M: Let s be the secret, let M be a large number Let s,, s,., sx be n random numbers such that S +S2+.+SN=S mod M Assign s, to the ith user
6 (N,1) - (N,N) scheme • (N,1) :Make N copies of the secret and give each user a copy • (N,N) :Let s be the secret, let M be a large number Let s1 , s2 ,…, sN be N random numbers such that s1+ s2+…+ sN = s mod M Assign si to the ith user

Adi shamir(n, d)-Scheme Pick a prime p and a random polynomial f(x)=adrdl+ ad-xxd-2+.+ ao mod p f(0) User i receive si-f(i)mod p Any d users can interpolate to obtain f and he ence s any d-1 users can not obtain any information about s
7 Adi Shamir (N,d)-Scheme • Pick a prime p • and a random polynomial f (x) = ad-1 x d-1 + ad-2 x d-2 +…+ a0mod p a0 = f (0) = s • User i receive si = f (i) mod p • Any d users can interpolate to obtain f and hence s • Any d-1 users can not obtain any information about s

Vandermonde system Vandermonde system is full rank and hence has a unique solution
8 Vandermonde System • Vandermonde System is full rank and hence has a unique solution = − − − − d i i i d d d d d d s s s a a a i i i i i i 2 1 1 1 0 1 1 2 2 1 1 1 1 ... 1 ... 1

bit commitment Problem Alice wants to sell Bob information regarding police informants within his Mafia empire. Alice doesnt trust Bob enough to tell him the rats without getting paid first they might suddenly disappear). Bob thinks that the deal is a police setup and wont give her the money until she commits to names
9 bit commitment Problem: • Alice wants to sell Bob information regarding police informants within his Mafia empire. • Alice doesn’t trust Bob enough to tell him the rats without getting paid first (they might suddenly disappear). • Bob thinks that the deal is a police setup, and won’t give her the money until she commits to names

bit commitment Commitment Bob→ Alice: random r Aice→Bob:{r|m}k Revelation Alice→Bob:k Bob decrypts the message and verifies r Discussion The random value r is used for freshness and to stop Alice from finding two messages where imi==tmy k2 i.e. forcing alice to commit Bob does not know k until revelation so cannot brute force the message space
10 bit commitment Commitment: • Bob → Alice: random r • Alice → Bob: {r|m}k Revelation: • Alice → Bob: k • Bob decrypts the message and verifies r Discussion: • The random value r is used for freshness and to stop Alice from finding two messages where {m}k1 == {m’}k2 – i.e. forcing Alice to commit • Bob does not know k until revelation so cannot brute force the message space
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国矿业大学:密码学_Public Key Cryptography.ppt
- 中国矿业大学:密码学_Public Key Cryptography.ppt
- 中国矿业大学:《密码学》PPT教学课件(曹天杰).ppt
- 中国矿业大学:密码学_Outline.ppt
- 中国矿业大学:密码学_NTHEORY2(Group Theory and Number Theory for Cryptology).ppt
- 中国矿业大学:密码学_LECTURE3.ppt
- 中国矿业大学:密码学_Hash Functions.ppt
- 中国矿业大学:密码学_Digital Signature.ppt
- 中国矿业大学:密码学_CRYPTO12(Number Theory).ppt
- 中国矿业大学:密码学_Block ciphers-L&D(Linear and Differential Cryptanalysis).ppt
- 中国矿业大学:密码学_Block ciphers-DES(DATA ENCRYPTION STANDARD).ppt
- 中国矿业大学:密码学_Block ciphers-AES(Advanced Encryption Standard).ppt
- 中国矿业大学:密码学_authentication protocol.ppt
- 湖北工业大学:《数据结构》第9章 排序(2/2).ppt
- 湖北工业大学:《数据结构》第9章 排序(1/2).ppt
- 湖北工业大学:《数据结构》第8章 图(2/2).ppt
- 湖北工业大学:《数据结构》第8章 图(1/2).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(5/5).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(4/5).ppt
- 湖北工业大学:《数据结构》第7章 树和二叉树(Tree & Binary Tree)(3/5).ppt
- 《LaTeX2e1》参考书籍PDF电子版:附录A书信的编辑.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录B参数文献数据库的处理.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录CTX程序设计.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录D扩展X.pdf
- 《LaTeX2e1》参考书籍PDF电子版:附录E 计算机现代字体.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第一章 简介.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第二章 命令与环境.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第三章 文档的布局与组织.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第四章 显示文本.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第五章 数学公式.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第六章 图形.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第七章 用户定制TEX.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第八章 高级功能.pdf
- 《LaTeX2e1》参考书籍PDF电子版:第九章 错误消息.pdf
- MIS《管理信息系统概论》教材PPT教学课件(主编:张宽海,共六章).ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第1章 总论(杨宪泽).ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第2章 相关知识表示方法.ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第3章 产生式系统及其搜索方法.ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第4章 机器翻译部分(机器翻译方法).ppt
- 西南师范大学精品课程:《人工智能与机器翻译》课程教学资源(PPT课件)第5章 单词与词组的处理与分析.ppt