计算机科学与技术(参考文献)Device-Free Gesture Tracking Using Acoustic Signals

Device-Free Gesture Tracking Using Acoustic Signals Wei Wangt Alex X.Liut Ke Sunt tNanjing University,Michigan State University MobiCom'16 Oct4h,2016 日+回1三1交非三勺风 1/20
Device-Free Gesture Tracking Using Acoustic Signals Wei Wang† Alex X. Liu†‡ Ke Sun† †Nanjing University, ‡Michigan State University MobiCom’16 Oct 4th, 2016 1/20

Motivation System Desion Experiments Conclusions 市商 Motivation It is difficult to input on smart watches 口,01三13卡至QC 2/20
Motivation System Design Experiments Conclusions Motivation It is difficult to input on smart watches 2/20

Motivation System Design Experiments Conclusions Limitation of Prior Arts Google Soli designs specialized 60GHz chips for gesture input 日,+司1三13卡三分Q0 3/20
Motivation System Design Experiments Conclusions Limitation of Prior Arts Google Soli designs specialized 60GHz chips for gesture input 3/20

Motivation System Design Experiments Conclusions Problem Statment Can we build software-based to replace specialized hardware? and meet these design goals .High accuracy (mm-level) .Low latency (30 ms) Low computational cost (works on mobile devices) 。Low energy 日,+司1三13卡三分Q0 4/20
Motivation System Design Experiments Conclusions Problem Statment Can we build software-based to replace specialized hardware? . . . and meet these design goals • High accuracy (mm-level) • Low latency (< 30 ms) • Low computational cost (works on mobile devices) • Low energy 4/20

Motivation System Design Experiments Conclusions Problem Statment Can we build software-based to replace specialized hardware? ..and meet these design goals High accuracy(mm-level) ·Low latency(<30ms) Low computational cost (works on mobile devices) 。Low energy 日,+司1三13卡三分Q0 4/20
Motivation System Design Experiments Conclusions Problem Statment Can we build software-based to replace specialized hardware? . . . and meet these design goals • High accuracy (mm-level) • Low latency (< 30 ms) • Low computational cost (works on mobile devices) • Low energy 4/20

Motivation System Design Experiments Conclusions 市 Can we do that? 日,+司1三13卡三分Q0 5/20
Motivation System Design Experiments Conclusions Can we do that? 5/20

Motivation System Design Experiments Conclusions Basic Idea Acos 2nft CIC Dynamic 年c0s2nft Static Component component CIC -sin 2nft Combined Use plain cos wave rather than impulses Measure the phase rather than Doppler shifts Decompose the received signal in vector space rather than in the time/frequency domain 日+回1三1交非三勺风 6/20
Motivation System Design Experiments Conclusions Basic Idea cos 2πft —sin 2πft CIC CIC I Q Acos2πft I Q Combined Static component Dynamic Component • Use plain cos wave rather than impulses • Measure the phase rather than Doppler shifts • Decompose the received signal in vector space rather than in the time/frequency domain 6/20

Motivation System Design Experiments Conclusions Basic Idea Dynamic Component Acos 2nft CIC Static 年c0s2nft component CIC Combined -sin 2nft Use plain cos wave rather than impulses Measure the phase rather than Doppler shifts Decompose the received signal in vector space rather than in the time/frequency domain 日+回1三1交非三勺风 6/20
Motivation System Design Experiments Conclusions Basic Idea cos 2πft —sin 2πft CIC CIC I Q Acos2πft I Q Combined Static component Dynamic Component • Use plain cos wave rather than impulses • Measure the phase rather than Doppler shifts • Decompose the received signal in vector space rather than in the time/frequency domain 6/20

Motivation System Design Experiments Conclusions Basic Idea Combined Dynamic Component Acos 2nft +8 ↑c0s2nft Static component -sin 2nft Use plain cos wave rather than impulses Measure the phase rather than Doppler shifts Decompose the received signal in vector space rather than in the time/frequency domain 日+回1三1交非三勺风 6/20
Motivation System Design Experiments Conclusions Basic Idea cos 2πft —sin 2πft CIC CIC I Q Acos2πft I Q Combined Static component Dynamic Component • Use plain cos wave rather than impulses • Measure the phase rather than Doppler shifts • Decompose the received signal in vector space rather than in the time/frequency domain 6/20

Motivation System Design Experiments Conclusions Real World Signals 464 Time (seconds) Sound frequency 17~22 kHz->wavelength 1.5~2 cm Path length change of wavelength>phase change of 2m 。Move1.25mm→path length change2.5mm→phase changeπ/4 。Phase change direction→movement direction 日,+司1三13卡三分Q0 720
Motivation System Design Experiments Conclusions Real World Signals 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 −300 −200 −100 0 100 200 300 Time (seconds) I/Q (normalized) I Q −200 −100 0 100 200 −300 −200 −100 0 100 I (normalized) Q (normalized) Starting (4.04s) Static vector Ending (4.64s) Dynamic vector • Sound frequency 17 ∼ 22 kHz → wavelength 1.5 ∼ 2 cm • Path length change of wavelength → phase change of 2π • Move 1.25 mm → path length change 2.5 mm → phase change π/4 • Phase change direction → movement direction 7/20
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 计算机科学与技术(参考文献)Device-Free Gesture Tracking Using Acoustic Signals.pdf
- 计算机科学与技术(参考文献)Depth Aware Finger Tapping on Virtual Display.pdf
- 计算机科学与技术(参考文献)Keystroke Recognition Using WiFi Signals.pdf
- 计算机科学与技术(参考文献)Understanding and Modeling of WiFi Signal Based Human Activity Recognition.pdf
- 计算机科学与技术(参考文献)Understanding and Modeling of WiFi Signal Based Human Activity Recognition.pdf
- 计算机科学与技术(参考文献)Femto-Matching:Efficient Traffic Offloading in Heterogeneous Cellular Networks.pdf
- 计算机科学与技术(参考文献)WiTrace - Centimeter-Level Passive Gesture Tracking Using OFDM signals.pdf
- 计算机科学与技术(参考文献)Femto-Matching - Efficient Traffic Offloading in Heterogeneous Cellular Networks.pdf
- 计算机科学与技术(参考文献)Opportunistic Energy-Efficient Contact Probing in Delay-Tolerant Applications.pdf
- 计算机科学与技术(参考文献)Wireless Charger Placement and Power Allocation for Maximizing Charging Quality.pdf
- 计算机科学与技术(参考文献)Optimizing Itinerary Selection and Charging Association for Mobile Chargers.pdf
- 计算机科学与技术(参考文献)Efficient Data Center Flow Scheduling Without Starvation Using Expansion Ratio.pdf
- 计算机科学与技术(参考文献)MobiCache - Cellular traffic offloading leveraging cooperative caching in mobile social networks.pdf
- 计算机科学与技术(参考文献)Burstiness-Aware Resource Reservation for Server Consolidation in Computing Clouds.pdf
- 计算机科学与技术(参考文献)Virtual Network Embedding with Opportunistic Resource Sharing.pdf
- 计算机科学与技术(参考文献)P3 - Joint Optimization of Charger Placement and Power Allocation for Wireless Power Transfer.pdf
- 计算机科学与技术(参考文献)An Opportunistic Resource Sharing and Topology-Aware Mapping Framework for Virtual Networks.pdf
- 南京大学:《软件工程研究导引 Introduction to Software Engineering Research》课程教学资源(课件讲稿)09 The TEX Typesetting System.pdf
- 南京大学:《软件工程研究导引 Introduction to Software Engineering Research》课程教学资源(课件讲稿)07 Tracing, Profiling, and Dynamic Program Analysis.pdf
- 南京大学:《软件工程研究导引 Introduction to Software Engineering Research》课程教学资源(课件讲稿)06 Static Program Analysis.pdf
- 计算机科学与技术(参考文献)Depth Aware Finger Tapping on Virtual Displays.pdf
- 计算机科学与技术(参考文献)Gait Recognition Using WiFi Signals.pdf
- 计算机科学与技术(参考文献)Gait Recognition Using WiFi Signals.pdf
- 计算机科学与技术(PPT讲稿)QGesture - Quantifying Gesture Distance and Direction with WiFi Signals.pptx
- 计算机科学与技术(参考文献)QGesture - Quantifying Gesture Distance and Direction with WiFi Signals.pdf
- 计算机科学与技术(参考文献)Unlock with Your Heart:Heartbeat-based Authentication on Commercial Mobile Phones.pdf
- 计算机科学与技术(参考文献)SpiderMon - Towards Using Cell Towers as Illuminating Sources for Keystroke Monitoring.pdf
- 计算机科学与技术(参考文献)Dynamic Speed Warping - Similarity-Based One-shot Learning for Device-free Gesture Signals.pdf
- 计算机科学与技术(参考文献)RespTracker - Multi-user Room-scale Respiration Tracking with Commercial Acoustic Devices.pdf
- 计算机科学与技术(参考文献)VSkin - Sensing Touch Gestures on Surfaces of Mobile Devices Using Acoustic Signals.pdf
- 计算机科学与技术(参考文献)VECTOR - Velocity Based Temperature-field Monitoring with Distributed Acoustic Devices.pdf
- 计算机科学与技术(PPT讲稿)Unlock with Your Heart - Heartbeat-based Authentication on Commercial Mobile Phones.pptx
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 1 Intro(主讲:邵俊明).pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 2 BasicConcepts(Foundations of Data Mining).pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 3 Hashing.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 4 Sampling for Big Data.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 5 Data Stream Mining.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 6 Graph Mining.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 7 Hadoop-Spark.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Introduction(冯钢).pdf