南京大学技术报告:Brief Introduction to UML 2.0(3/3)State Machine Modeling in UML2.0(for SEG seminar)

Brief Introduction to UML 2.0 II1 -State Machine Modeling in UML2.0 (for SEG seminar) Tian Zhang Nanjing University,China November 2005 成
Brief Introduction to UML 2.0 III – State Machine Modeling in UML2.0 (for SEG seminar) Tian Zhang Nanjing University,China November 2005

Appendix I一关于并发和并行 a并行性(parallelism)有三种含义: 同时性(simultaneity):指两个或多个事件在同一时刻发生在 多个资源上: 口并发性(concurrency):指两个或多个事件在同一时间间隔发 生在多个资源上: 流水线(pipeline):指两个或多个事件发生在可能重叠的时间 段内。 Tian Zhang Nanjing University 2
Tian Zhang @ Nanjing University 2 Appendix I — 关于并发和并行 并行性(parallelism)有三种含义: 同时性(simultaneity):指两个或多个事件在同一时刻发生在 多个资源上; 并发性(concurrency):指两个或多个事件在同一时间间隔发 生在多个资源上; 流水线(pipeline):指两个或多个事件发生在可能重叠的时间 段内

Outline Overview A review of statecharts 口 conventional state machine modeling two main limitations Harel Statecharts 口 original Harel Statecharts object-based variant of Harel Statecharts ■ State Machines in UML2.0 口 concepts and constructs diagrams Tian Zhang Nanjing University 3
Tian Zhang @ Nanjing University 3 Outline Overview A review of statecharts conventional state machine modeling – two main limitations Harel Statecharts original Harel Statecharts object-based variant of Harel Statecharts State Machines in UML2.0 concepts and constructs diagrams

Overview State Charts/Machines in both UML1.5 and 2.0 are kinds of object-based variant of Hare/statecharts. State Machines are essentially finite state-transition system used for modeling discrete behavior. ■ In addition to expressing the behavior of a part of the system,state machines can also be used to express the usage protocol of part of a system. 总之,UML2.0中的状态机是传统状态机的一个发展,它支持 OO、层次化、并发性、通信等,以实现对现代复杂分布式系 统的建模。 Tian Zhang Nanjing University 4
Tian Zhang @ Nanjing University 4 Overview State Charts/Machines in both UML1.5 and 2.0 are kinds of object-based variant of Harel statecharts. State Machines are essentially finite state-transition system used for modeling discrete behavior. In addition to expressing the behavior of a part of the system, state machines can also be used to express the usage protocol of part of a system. 总之,UML2.0中的状态机是传统状态机的一个发展,它支持 OO、层次化、并发性、通信等,以实现对现代复杂分布式系 统的建模

Review of statecharts Conventional state machine modeling techniques design of discrete-event system,such as reactive systems Limitations the complexity of the state diagram increases dramatically as the number of possible states increases lack of support for concurrent constructs 可以这样理解所谓传统状态机建模技术,即在David Harell的 Statecharts之前的那些状态机图,它们具有上述的两个主要的 缺点。 Tian Zhang Nanjing University 5
Tian Zhang @ Nanjing University 5 Review of statecharts Conventional state machine modeling techniques design of discrete-event system, such as reactive systems Limitations the complexity of the state diagram increases dramatically as the number of possible states increases lack of support for concurrent constructs 可以这样理解所谓传统状态机建模技术,即在David Harel的 Statecharts之前的那些状态机图,它们具有上述的两个主要的 缺点

Related work ■ Some related work recommending state machines for the user interface of interactive software; the specification of data-processing systems; hardware system description; the specification of communication protocols; computer aided instruction 注:以上均为上世纪70,80年代针对传统状态机的工作 Tian Zhang Nanjing University 6
Tian Zhang @ Nanjing University 6 Related work Some related work recommending state machines for : the user interface of interactive software; the specification of data-processing systems; hardware system description; the specification of communication protocols; computer aided instruction 注:以上均为上世纪70,80年代针对传统状态机的工作

Harel Statecharts David Harel The William Sussman Professorial Chair 0 Dept.of Computer Science and Applied Mathematics The Weizmann Institute of Science cofounder of i-Logix Inc. Research interests In the past,but diminished recent years computability and complexity theory,logics of programs,database theory,automata theory ▣recent years systems engineering,OO analysis and design,visual languages, layout of diagrams Tian Zhang Nanjing University
Tian Zhang @ Nanjing University 7 Harel Statecharts David Harel The William Sussman Professorial Chair Dept. of Computer Science and Applied Mathematics The Weizmann Institute of Science cofounder of i-Logix Inc. Research interests In the past, but diminished recent years – computability and complexity theory, logics of programs, database theory, automata theory recent years – systems engineering, OO analysis and design, visual languages, layout of diagrams

Warm up ■ How to model the following in conventional state machine diagrams 1.In all airborne states,when yellow handle is pulled seat will be ejected. 2.Gearbox change of state is independent of braking system. 3.When selection button is pressed enter selected mode. 4.Display-mode consists of time-display,date-display and stopwatch-display. Tian Zhang Nanjing University 8
Tian Zhang @ Nanjing University 8 Warm up How to model the following in conventional state machine diagrams : 1. In all airborne states, when yellow handle is pulled seat will be ejected. 2. Gearbox change of state is independent of braking system. 3. When selection button is pressed enter selected mode. 4. Display-mode consists of time-display, date-display and stopwatch-display

Warm up (2) In all airborne states,when yellow handle is pulled seat will be ejected calls for the ability to cluster states into a superstate Gearbox change of state is independent of braking system introduces independence,or orthogonality When selection button is pressed enter selected mode hints at the need for more general transitions than the single event-labelled arrow Display-mode consists of time-display,date-display and stopwatch-display captures the refinement of states Tian Zhang Nanjing University 9
Tian Zhang @ Nanjing University 9 Warm up (2) In all airborne states, when yellow handle is pulled seat will be ejected calls for the ability to cluster states into a superstate Gearbox change of state is independent of braking system introduces independence, or orthogonality When selection button is pressed enter selected mode hints at the need for more general transitions than the single event-labelled arrow Display-mode consists of time-display, date-display and stopwatch-display captures the refinement of states

Three Elements Statecharts extend conventional state-transition diagrams with essentially three elements Hierarchy Concurrency Communication In a nutshell,one can say 口 statecharts state-diagrams depth orthogonality broadcast-communication Tian Zhang Nanjing University 10
Tian Zhang @ Nanjing University 10 Three Elements Statecharts extend conventional state-transition diagrams with essentially three elements : Hierarchy Concurrency Communication In a nutshell, one can say : statecharts = state-diagrams + depth orthogonality + broadcast-communication
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学技术报告:Brief Introduction to UML 2.0(2/3)Activity & State Machine Modeling.pdf
- 南京大学技术报告:Brief Introduction to UML 2.0(1/3)for SEG seminar.pdf
- 南京大学技术报告:Model driven architecture - Principles and practice(张天).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Robust Frequent Directions with Application in Online Learning.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Buffered Asynchronous SGD for Byzantine Learning.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Blocking-based Neighbor Sampling for Large-scale Graph Neural Network.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Context-Aware Masking for Robust Speaker Verification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)NEWOn the Convergence and Improvement of Stochastic Normalized Gradient Descent.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Densely Connected Time Delay Neural Network for Speaker Verification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Difference Minimization Network for Semi-supervised Segmentation in Medical Images.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)ExchNet - A Unified Hashing Network for Accelerating Fine-Grained Image Retrieval.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Hashing based Answer Selection.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Deep Hashing for Speaker Identification and Retrieval.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)A Large-Scale Short Video Dataset for Near Duplicate Video Retrieval.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Ensemble Additive Margin Softmax for Speaker Verification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Discrete Latent Factor Model for Cross-Modal Hashing.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Deep Discrete Supervised Hashing.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Asymmetric Deep Supervised Hashing.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Semi-Supervised Deep Hashing with a Bipartite Graph.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Deep Cross-Modal Hashing.pdf
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)第一部分 传统软件工程方法(李宣东).ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)第二部分 面向对象软件工程(标准建模语言UML).ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)第三部分 软件过程、管理与质量.ppt
- 《软件工程 Software Engineering》课程教学资源:软件文档编写指南.doc
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 21 传统软件工程方法 Conventional Methods for Software Engineering.ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 22 面向对象软件工程 Object-Oriented Software Engineering(Unified Modeling Language, UML).ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 23 软件过程、管理与质量 Software Process, Management, and Quality.ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 24 软件工程中的高级课题 Advanced Topics in Software Engineering.ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 25 软件开发的新方法 New Methodology(Agile方法).ppt
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)绪论.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)模型评估与选择.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)线性模型.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)决策树.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子力学.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)聚类算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)分类算法(朱钦圣).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)降维算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)隐马尔科夫算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子机器学习(量子K-means算法).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子支持向量机(support vector machine, SVM).pdf