Introduction to Convolution Neural Networks(CNN)and systems

ch,9: Introduction to convolution Neural Networks (CNN) and systems KH Wong
Ch. 9: Introduction to Convolution Neural Networks (CNN) and systems KH Wong ch9. CNN. V9b3 1

Overview Part 1 Al. theory of cnN A2 Feed forward details A2 Back propagation details Part B: CNN Systems Part c: cnn tools ch9. CNN. V9b3
Overview • Part 1 – A1. Theory of CNN – A2. Feed forward details – A2. Back propagation details • Part B: CNN Systems • Part C: CNN Tools ch9. CNN. V9b3 2

Introduction Very popular Toolboxes: tensorflow, cuda-convnet and caffe( user friendlier) a high performance Classifier(multi-class Successful in object recognition, handwritten optical character oCr recognition, image noise removal etc Easy to implementation Slow in learning Fast in classification ch9. CNN. V9b3
Introduction • Very Popular: – Toolboxes: tensorflow, cuda-convnet and caffe (user friendlier) • A high performance Classifier (multi-class) • Successful in object recognition, handwritten optical character OCR recognition, image noise removal etc. • Easy to implementation – Slow in learning – Fast in classification ch9. CNN. V9b3 3

Overview of this note Prerequisite: knowledge of fully connected Back Propagation Neural Networks (BPNN), in http://www.cse.cuhk.edu.hk//khwong/www2/cm sc5707 5707 08 neural net. pptx Convolution neural networks(Cnn) -Part a2 feed forward of cnn Part a3: feed backward of cnn ch9. CNN. V9b3
Overview of this note • Prerequisite: knowledge of Fully connected Back Propagation Neural Networks (BPNN), in – http://www.cse.cuhk.edu.hk/~khwong/www2/cm sc5707/5707_08_neural_net.pptx • Convolution neural networks (CNN) – Part A2: feed forward of CNN – Part A3: feed backward of CNN ch9. CNN. V9b3 4

Part A1 Theory of cnn Convolution Neural Networks
Part A.1 Theory of CNN Convolution Neural Networks ch9. CNN. V9b3 5

An example optical character recognition(OCR) Example test example CNn. m in http://www.mathworks.com/matlabcentral fileexchange /38310-deep-learning-toolbox Based on a data base(mnist uint8, from http://yann.lecun.com/exdb/mnist/) 60,000 training examples(e. g 28x28 pixels eac .0,000 testing samples a different dataset After training, given an unknown image, it willl tell whether it iso, or 1...9 etc https://towardsdatascience.com a-simple-2d-cnn-for-mnist-digit- recognition-a998dbcle79a ch9. CNN. V9b3
An example optical character recognition (OCR) • Example test_example_CNN.m in http://www.mathworks.com/matlabcentral /fileexchange/38310-deep-learning-toolbox • Based on a data base (mnist_uint8, from http://yann.lecun.com/exdb/mnist/) • 60,000 training examples (e.g. 28x28 pixels each) • 10,000 testing samples (a different dataset) – After training , given an unknown image, it will tell whether it is 0, or 1 ,..,9 etc. ch9. CNN. V9b3 6 https://towardsdatascience.com/ a-simple-2d-cnn-for-mnist-digit- recognition-a998dbc1e79a

The basic idea of convolution neural networks cnn Same idea as back-propagation- neural networks ( bpnn but different implementation After vectorized (vec), the 2d arranged inputs become 1D https://adeshpande3.github.io/adeshpande3.github.io/a-begInner%27s Guide- To-Understanding-Convolutional-Neural-Networks/ vectors then the network is just like a BPNN ch9. CNN. V9b3 (Back propagation neural networks
The basic idea of Convolution Neural Networks CNN Same idea as Back-propagation-neural networks (BPNN) but different implementation • ch9. CNN. V9b3 7 https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s- Guide-To-Understanding-Convolutional-Neural-Networks/ After vectorized (vec), the 2D arranged inputs become 1D vectors. Then the network is just like a BPNN (Back propagation neural networks )

Basic structure of cnn The convolution layer: see how to use convolution for feature identifier ch9. CNN. V9b3
Basic structure of CNN The convolution layer: see how to use convolution for feature identifier ch9. CNN. V9b3 8

The basic structure Input conv subs. conV subs fully fully output Alternating Convolution(conv) and subsampling layer(subs Subsampling allows the features to be flexibly positioned ch9. CNN. V9b3
The basic structure • ch9. CNN. V9b3 9 Input conv. subs. conv subs fully fully output • Alternating Convolution (conv) and subsampling layer (subs) • Subsampling allows the features to be flexibly positioned

Convolution(conv) layer Example: From the input layer to the first hidden layer · The first hidden layer represents the filter outputs of a certain input neurons first hidden layer feature ·So, what is a feature? · Answer is in the next slide isualization of 5 x 5 filter convolving around an input volume and producing an activation map ch9. CNN. V9b3
Convolution (conv) layer: Example: From the input layer to the first hidden layer • The first hidden layer represents the filter outputs of a certain feature • So, what is a feature? • Answer is in the next slide ch9. CNN. V9b3 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《编译原理》课程教学资源(PPT课件讲稿)第八章 代码生成.ppt
- 《数字图像处理》课程PPT教学课件(讲稿)第四章 点运算.ppt
- 《计算机系统安全》课程教学资源(PPT课件讲稿)第七章 公开密钥设施PKI Public key infrastructure.ppt
- 《密码学》课程教学资源(PPT课件讲稿)第10章 密码学的新方向.ppt
- 清华大学:Local Area Network and Ethernet(PPT课件讲稿).pptx
- 《计算机组成与设计》课程教学资源(PPT课件讲稿)第2章 指令——计算机的语言.ppt
- 《数据挖掘导论 Introduction to Data Mining》课程教学资源(PPT课件讲稿)Data Mining Classification(Basic Concepts, Decision Trees, and Model Evaluation).ppt
- 《微型计算机原理及接口技术》课程电子教案(PPT课件)第9章 AT89S52单片机的I/O扩展.ppt
- 四川大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)Unit5 Introduction to Computer Networks.ppt
- 《计算机软件技术基础》课程教学资源(PPT课件讲稿)排序(教师:曾晓东).ppt
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)normalization.ppt
- 《单片机原理及应用》课程教学资源(PPT课件讲稿)第11章 单片机应用系统的串行扩展.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第7章 多处理器及线程级并行 7.1 引言 7.2 集中式共享存储器体系结构.pptx
- 上海交通大学:操作系统安全(PPT课件讲稿)设备管理与I/O系统.pps
- 《编辑原理》课程教学资源(PPT课件)目标代码生成.pptx
- 四川大学:Object-Oriented Design and Programming(Java,PPT课件)3.2 Graphical User Interface.ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第三章 流水线技术.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)异常处理 Exception Handling.ppt
- 中国科学技术大学:云计算基本概念、关键技术、应用领域及发展趋势.pptx
- 《C程序设计》课程电子教案(PPT课件讲稿)第二章 基本数据类型及运算.ppt
- 华北科技学院:数字视频教学软件与制作(PPT课件讲稿)数字视频编辑软件Premiere 6.5(主讲:于文华).ppt
- 中国科学技术大学:《Linux操作系统分析》课程教学资源(PPT课件讲稿)文件系统.ppt
- 哈尔滨工业大学:再探深度学习词向量表示(PPT课件讲稿)Advanced word vector representations(主讲人:李泽魁).ppt
- 《Visual Basic程序设计》课程教学资源(PPT课件讲稿)第四章 VB的基本语句.pps
- 《单片机原理及应用》课程PPT教学课件(C语言版)第4章 C51程序设计入门(单片机C语言及程序设计).ppt
- 西安培华学院:《微机原理》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 《数据结构与算法》课程教学资源(PPT课件讲稿)第三章 树 3.1 树的有关定义.ppt
- 《计算机网络》课程教学资源(考试大纲)计算机网络考试大纲.doc
- 西安电子科技大学:《Mobile Programming》课程PPT教学课件(Android Programming)Lecture 2 Intro to Java Programming.pptx
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 2 The Relational Model.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第6章 用数组处理批量数据.pptx
- 电子工业出版社:《计算机网络》课程教学资源(第六版,PPT课件讲稿)第六章 应用层.pptx
- 清华大学:《计算机导论》课程电子教案(PPT教学课件)第3章 计算机基础知识.ppt
- 中国科学技术大学:《现代密码学理论与实践》课程教学资源(PPT课件讲稿)第4章 有限域(第五版).pptx
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 3 SQL.ppt
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第2章 逻辑程序设计语言.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 查找.ppt
- 上海交通大学:云安全(PPT讲稿)Cloud Security.pptx
- 《计算机网络》课程教学大纲(适用专业:信息与计算科学).pdf
- 江苏大学:《面向对象建模技术》课程教学资源(PPT课件讲稿)第2章 用例图.ppt