《数据挖掘导论 Introduction to Data Mining》课程教学资源(PPT课件讲稿)Data Mining Classification(Basic Concepts, Decision Trees, and Model Evaluation)

Data Mining Classification: Basic Concepts, Decision Trees, and model evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar C Tan, Steinbach, Kumar Introduction to Data Mining 18/2004
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

Classification: definition Given a collection of records(training set Each record contains a set of attributes, one of the attributes is the class Find a mode/ for class attribute as a function of the values of other attributes Goal: previously unseen records should be assigned a class as accurately as possible a test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it C Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Classification: Definition Given a collection of records (training set ) – Each record contains a set of attributes, one of the attributes is the class. Find a model for class attribute as a function of the values of other attributes. Goal: previously unseen records should be assigned a class as accurately as possible. – A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it

Illustrating Classification Task Tid Attrib1 Attrib2 Attrib3 Class . earning algorithm Medium100KNo Medium Induction Large 220K Learn Model 75K 10 No Small 90K Training Set Model Tid Attrib1 Attrib2 Attrib3 Class Model 11 No Small Medium 80K Deduction 15 No 67K7 Test Set C Tan, Steinbach, Kumar Introduction to Data Mining 18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Illustrating Classification Task Apply Model Induction Deduction Learn Model Model Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes 10 Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K ? 12 Yes Medium 80K ? 13 Yes Large 110K ? 14 No Small 95K ? 15 No Large 67K ? 10 Test Set Learning algorithm Training Set

Examples of Classification Task Predicting tumor cells as benign or malignant Classifying credit card transactions as legitimate or fraudulent Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil Categorizing news stories as finance, weather, entertainment, sports, etc C Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Examples of Classification Task Predicting tumor cells as benign or malignant Classifying credit card transactions as legitimate or fraudulent Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil Categorizing news stories as finance, weather, entertainment, sports, etc

Classification Techniques Decision Tree based Methods Rule-based methods Memory based reasoning Neural Networks Naive Bayes and Bayesian Belief Networks Support Vector Machines C Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Classification Techniques Decision Tree based Methods Rule-based Methods Memory based reasoning Neural Networks Naïve Bayes and Bayesian Belief Networks Support Vector Machines

Example of a decision Tree Splitting Attributes Tid Refund Marital Taxable Status Income Cheat 1 Y Single 125K No 2No Married 100K No Refund Yes 3No Single 70K No 4 Yes Married 120K No NO MarT 5No Divorced 95K Yes Single, DiVorced Married nO Married60K No 7 Y Divorced220K No TaxIng NO 8No Yes 80K No Married 75K No NO YES 10No Single 90K Yes Training Data Model: decision tree C Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Example of a Decision Tree Tid Refund Marital Status Taxable Income Cheat 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes 10 Refund MarSt TaxInc NO YES NO NO Yes No Single, Divorced Married 80K Splitting Attributes Training Data Model: Decision Tree

Another Example of Decision Tree MasT Single Married Divorced d refund marital Taxable Status Income Cheat NO Refund Single 125K No Yes No Married 100K No 3No Single 70K No NO TaxIne Married 120K No 80K 5No Divorced 95K Yes NO YES 6No Married 60K No Divorced 220K No 8No 85K Yes 9No Married 75K No There could be more than one tree that 10No Single 90KYes fits the same datal C Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Another Example of Decision Tree Tid Refund Marital Status Taxable Income Cheat 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes 10 MarSt Refund TaxInc NO YES NO NO Yes No Married Single, Divorced 80K There could be more than one tree that fits the same data!

Decision tree classification task Tree Tid Attrib1 Attrib2 Attrib3 Class Induction algorith Medium Induction Large 220K Learn Model 90K Training set Model Decision Model ree Attrib3 Cla Deduction 95K C Tan, Steinbach, Kumar Introduction to Data Mining 18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Decision Tree Classification Task Apply Model Induction Deduction Learn Model Model Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes 10 Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K ? 12 Yes Medium 80K ? 13 Yes Large 110K ? 14 No Small 95K ? 15 No Large 67K ? 10 Test Set Tree Induction algorithm Training Set Decision Tree

Apply Model to Test Data Test Data Start from the root of tree Refund marital Taxable Status Income Cheat No Married 80K Refund Yes NO MasT Single, Diorced Married TaxIng NO 80K >80K NO YES C Tan, Steinbach, Kumar Introduction to Data Mining 18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Apply Model to Test Data Refund MarSt TaxInc NO YES NO NO Yes No Single, Divorced Married 80K Refund Marital Status Taxable Income Cheat No Married 80K ? 10 Test Data Start from the root of tree

Apply Model to Test Data Test Data Refund marital Taxable Status Income Cheat No Married 80K Refund Yes NO MasT Single, Diorced Married TaxIng NO 80K >80K NO YES C Tan, Steinbach, Kumar Introduction to Data Mining 18/2004
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Apply Model to Test Data Refund MarSt TaxInc NO YES NO NO Yes No Single, Divorced Married 80K Refund Marital Status Taxable Income Cheat No Married 80K ? 10 Test Data
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微型计算机原理及接口技术》课程电子教案(PPT课件)第9章 AT89S52单片机的I/O扩展.ppt
- 四川大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)Unit5 Introduction to Computer Networks.ppt
- 《计算机软件技术基础》课程教学资源(PPT课件讲稿)排序(教师:曾晓东).ppt
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)normalization.ppt
- 《单片机原理及应用》课程教学资源(PPT课件讲稿)第11章 单片机应用系统的串行扩展.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第7章 多处理器及线程级并行 7.1 引言 7.2 集中式共享存储器体系结构.pptx
- 上海交通大学:操作系统安全(PPT课件讲稿)设备管理与I/O系统.pps
- 《编辑原理》课程教学资源(PPT课件)目标代码生成.pptx
- 四川大学:Object-Oriented Design and Programming(Java,PPT课件)3.2 Graphical User Interface.ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第三章 流水线技术.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)异常处理 Exception Handling.ppt
- 中国科学技术大学:云计算基本概念、关键技术、应用领域及发展趋势.pptx
- 《C程序设计》课程电子教案(PPT课件讲稿)第二章 基本数据类型及运算.ppt
- 《电子商务概论》课程教学资源(PPT课件)第十章 电子商务安全技术.ppt
- 中国铁道出版社:《局域网技术与组网工程》课程教学资源(PPT课件讲稿)第4章 Windows Server系统工程.ppt
- 《Internet技术与应用》课程PPT教学课件(讲稿)第3讲 双绞线制作和传输介质.ppt
- jQuery个人主页(PPT讲稿).ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第10章 内排序.ppt
- 最小生成树(PPT课件讲稿)Minimum Spanning Trees.pptx
- 中国科学技术大学:《数据结构与数据库》课程教学资源(PPT课件讲稿)第五章 串和数组.pps
- 《计算机组成与设计》课程教学资源(PPT课件讲稿)第2章 指令——计算机的语言.ppt
- 清华大学:Local Area Network and Ethernet(PPT课件讲稿).pptx
- 《密码学》课程教学资源(PPT课件讲稿)第10章 密码学的新方向.ppt
- 《计算机系统安全》课程教学资源(PPT课件讲稿)第七章 公开密钥设施PKI Public key infrastructure.ppt
- 《数字图像处理》课程PPT教学课件(讲稿)第四章 点运算.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第八章 代码生成.ppt
- Introduction to Convolution Neural Networks(CNN)and systems.pptx
- 华北科技学院:数字视频教学软件与制作(PPT课件讲稿)数字视频编辑软件Premiere 6.5(主讲:于文华).ppt
- 中国科学技术大学:《Linux操作系统分析》课程教学资源(PPT课件讲稿)文件系统.ppt
- 哈尔滨工业大学:再探深度学习词向量表示(PPT课件讲稿)Advanced word vector representations(主讲人:李泽魁).ppt
- 《Visual Basic程序设计》课程教学资源(PPT课件讲稿)第四章 VB的基本语句.pps
- 《单片机原理及应用》课程PPT教学课件(C语言版)第4章 C51程序设计入门(单片机C语言及程序设计).ppt
- 西安培华学院:《微机原理》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 《数据结构与算法》课程教学资源(PPT课件讲稿)第三章 树 3.1 树的有关定义.ppt
- 《计算机网络》课程教学资源(考试大纲)计算机网络考试大纲.doc
- 西安电子科技大学:《Mobile Programming》课程PPT教学课件(Android Programming)Lecture 2 Intro to Java Programming.pptx
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 2 The Relational Model.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第6章 用数组处理批量数据.pptx
- 电子工业出版社:《计算机网络》课程教学资源(第六版,PPT课件讲稿)第六章 应用层.pptx
- 清华大学:《计算机导论》课程电子教案(PPT教学课件)第3章 计算机基础知识.ppt