《算法入门》(英文版)Lecture 3 Prof. Erik Demaine

Introduction to algorithms 6.046J/18.401J/SMA5503 Lecture 3 Prof erik demaine
Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 3 Prof. Erik Demaine

The divide-and-conquer design paradigm 1. Divide the problem(instance) into subproblems 2. Conquer the subproblems by solving them recursively 3. Combine subproblem solutions Day 4 Introduction to Algorithms L3.2
Day 4 Introduction to Algorithms L3.2 The divide-and-conquer design paradigm 1. Divide the problem (instance) into subproblems. 2. Conquer the subproblems by solving them recursively. 3. Combine subproblem solutions

Example: merge sort 1 Divide: trivial 2. Conquer. recursively sort 2 subarrays 3. Combine: Linear-time merge 7(n)=2(m2)+O(m) subproblems work dividing and combining subproblem size Day 4 Introduction to Algorithms L3.3
Day 4 Introduction to Algorithms L3.3 Example: merge sort 1. Divide: Trivial. 2. Conquer: Recursively sort 2 subarrays. 3. Combine: Linear-time merge. T(n) = 2 T(n/2) + O(n) # subproblems subproblem size work dividing and combining

Master theorem(reprise) 7(n)=a(m/b)+f(n) CASE 1: f(n)=O(nlogba-E →(n)=(n0g) CASE 2: f(n)=o(nlogbalgkn →7(n)=( logba Ig+ln) CASE 3: f (n)=92(noga+a)and af(n/b)scf(n) →7(m)=((n) Merge sort: a=2, 6=2= noga=n →CASE2(k=0)→7m)=mnln) Day 4 Introduction to Algorithms
Day 4 Introduction to Algorithms L3.4 Master theorem (reprise) T(n) = a T(n/b) + f(n) CASE 1: f(n) = O(nlogba – ε) ⇒ T(n) = Θ(nlogba) . CASE 2: f(n) = Θ(nlogba lgkn) ⇒ T(n) = Θ(nlogba lgk+1n) . CASE 3: f(n) = Ω(nlogba + ε) and a f(n/b) ≤ c f(n) ⇒ T(n) = Θ(f(n)) . Merge sort: a = 2, b = 2 ⇒ nlogba = n ⇒ CASE 2 (k = 0) ⇒ T(n) = Θ(n lg n)

Binary search Find an element in a sorted array 1 Divide: check middle element 2. Conquer: Recursively search I subarray 3. Combine. trivial Example: find 9 357891215 Day 4 Introduction to Algorithms L3.5
Day 4 Introduction to Algorithms L3.5 Binary search Example: Find 9 3 5 7 8 9 12 15 Find an element in a sorted array: 1. Divide: Check middle element. 2. Conquer: Recursively search 1 subarray. 3. Combine: Trivial

Binary search Find an element in a sorted array 1 Divide: check middle element 2. Conquer: Recursively search I subarray 3. Combine. trivial Example: find 9 357891215 Day 4 Introduction to Algorithms L36
Day 4 Introduction to Algorithms L3.6 Binary search Example: Find 9 3 5 7 8 9 12 15 Find an element in a sorted array: 1. Divide: Check middle element. 2. Conquer: Recursively search 1 subarray. 3. Combine: Trivial

Binary search Find an element in a sorted array 1 Divide: check middle element 2. Conquer: Recursively search I subarray 3. Combine. trivial Example: find 9 357891215 Day 4 Introduction to Algorithms L3.7
Day 4 Introduction to Algorithms L3.7 Binary search Example: Find 9 3 5 7 8 9 12 15 Find an element in a sorted array: 1. Divide: Check middle element. 2. Conquer: Recursively search 1 subarray. 3. Combine: Trivial

Binary search Find an element in a sorted array 1 Divide: check middle element 2. Conquer: Recursively search I subarray 3. Combine. trivial Example: find 9 357891215 Day 4 Introduction to Algorithms L3.8
Day 4 Introduction to Algorithms L3.8 Binary search Example: Find 9 3 5 7 8 9 12 15 Find an element in a sorted array: 1. Divide: Check middle element. 2. Conquer: Recursively search 1 subarray. 3. Combine: Trivial

Binary search Find an element in a sorted array 1 Divide: check middle element 2. Conquer: Recursively search I subarray 3. Combine. trivial Example: find 9 357891215 Day 4 Introduction to Algorithms
Day 4 Introduction to Algorithms L3.9 Binary search Example: Find 9 3 5 7 8 9 12 15 Find an element in a sorted array: 1. Divide: Check middle element. 2. Conquer: Recursively search 1 subarray. 3. Combine: Trivial

Binary search Find an element in a sorted array 1 Divide: check middle element 2. Conquer: Recursively search I subarray 3. Combine. trivial Example: find 9 357891215 Day 4 Introduction to Algorithms L3.10
Day 4 Introduction to Algorithms L3.10 Binary search Find an element in a sorted array: 1. Divide: Check middle element. 2. Conquer: Recursively search 1 subarray. 3. Combine: Trivial. Example: Find 9 3 5 7 8 9 12 15
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《算法入门》(英文版)Lecture 2 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 1 Prof. Charles E. Leiserson.pdf
- 《城市设计实例—步行商业》杭州湖滨旅游商贸特色街区.ppt
- 《教育心理学》(英文版)Theories Operant Conditioning.ppt
- 《教育心理学》(英文版)Theories:Operant Conditioning.ppt
- 《教育心理学》(英文版)Pavlov and Waston.ppt
- 《教育心理学》(英文版)Behavioral Learning Theories(Thorndike).ppt
- 《教育心理学》(英文版)Bandura’s Social Learning Theory.ppt
- 《教育心理学》(英文版)Learning:introduction.ppt
- 《教育心理学》(英文版)Behavioral Learning Theories.ppt
- 《教育心理学》(英文版)Theories of Development.ppt
- 《教育心理学》(英文版)The history and development of E P.ppt
- 《教育心理学》(英文版)Educational Psychology.ppt
- 《教育心理学》(英文版)Tolman.ppt
- 《教育心理学》(英文版)Gestalt Psychology.ppt
- 《教育心理学》(英文版)Gestalt Psychology(new).ppt
- 《教育心理学》(英文版)Bruner’s Learning Theory.ppt
- 《教育心理学》(英文版)Chapter 5 Cognitive Learning Theorie.ppt
- 《Visual FoxPro数据库与程序设计》第四章 关系数据库标准语言SQL.ppt
- 《Visual FoxPro数据库与程序设计》第十章 开 发应用程序.ppt
- 《算法入门》(英文版)Lecture 4 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 5 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 6 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 7 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 8 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 9 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 10 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 11 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 12 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 13 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 14 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 15 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 16 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 17 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 18 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 19 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 20 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 21 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 22 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 23 Prof. Charles E. Leiserson.pdf