《算法入门》(英文版)Lecture 1 Prof. Charles E. Leiserson

Introduction to algorithms 6.046J/18.401J/SMA5503 Lecture l Prof. charles e. leiserson
Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Welcome to introduction to Algorithms, Fall 2001 Handouts 1. Course Information 2. Calendar 3. Registration (MIT students only) 4. References 5. Objectives and Outcomes 6. Diagnostic survey Day 1 Introduction to Algorithms L12
Day 1 Introduction to Algorithms L1.2 Welcome to Introduction to Algorithms, Fall 2001 Handouts 1. Course Information 2. Calendar 3. Registration (MIT students only) 4. References 5. Objectives and Outcomes 6. Diagnostic Survey

Course information 1. Staff 8. Website 2. Distance learning 9. Extra help 3. Prerequisites 10. Registration MIT only) 4. Lectures 11. Problem sets 5. Recitations 12. Describing algorithms 6. Handouts 13.G1 rading policy 7. Textbook(CLRS) 14. Collaboration policy Course information handout Day 1 Introduction to Algorithms 1.3
Day 1 Introduction to Algorithms L1.3 Course information 1. Staff 2. Distance learning 3. Prerequisites 4. Lectures 5. Recitations 6. Handouts 7. Textbook (CLRS) 8. Website 9. Extra help 10.Registration (MIT only) 11.Problem sets 12.Describing algorithms 13.Grading policy 14.Collaboration policy ¾ Course information handout

Analysis of algorithms The theoretical study of computer-program performance and resource usage What's more important than performance? modularity o user-friendliness correctness programmer time maintainability simplicity functionality extensibility robustness reliability Day 1 Introduction to Algorithms
Day 1 Introduction to Algorithms L1.4 Analysis of algorithms The theoretical study of computer-program performance and resource usage. What’s more important than performance? • modularity • correctness • maintainability • functionality • robustness • user-friendliness • programmer time • simplicity • extensibility • reliability

Why study algorithms and performance? Algorithms help us to understand scalability Performance often draws the line between what is feasible and what is impossible Algorithmic mathematics provides a language for talking about program behavior The lessons of program performance generalize to other computing resources Speed is fun! Day 1 Introduction to Algorithms 1.5
Day 1 Introduction to Algorithms L1.5 Why study algorithms and performance? • Algorithms help us to understand scalability. • Performance often draws the line between what is feasible and what is impossible. • Algorithmic mathematics provides a language for talking about program behavior. • The lessons of program performance generalize to other computing resources. • Speed is fun!

The problem of sorting Input: sequence(a1, a2,.,an,of numbers Output: permutation (al, a2,..., an such that a1≤a2≤…≤an Example: put:824936 Output: 23 4689 Day 1 Introduction to Algorithms L16
Day 1 Introduction to Algorithms L1.6 The problem of sorting Input: sequence 〈a1, a2, …, an〉 of numbers. Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Output: permutation 〈a'1, a'2, …, a'n〉 such that a'1 ≤ a'2 ≤ … ≤ a'n

Insertion sort INSERTION-SORT(A, n) D Al.n forj←2ton do key←Aj pseudocode while i>0 and a[i> key doA[i+1]←A[d Ai+1=key sorted ey Day 1 Introduction to Algorithms 17
Day 1 Introduction to Algorithms L1.7 Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i ← j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i] i ← i – 1 A[i+1] = key “pseudocode” i j key sorted A: 1 n

Example of insertion sort 824936 Day 1 Introduction to Algorithms
Day 1 Introduction to Algorithms L1.8 Example of insertion sort 824936

Example of insertion sort 824936 Day 1 Introduction to Algorithms 1.9
Day 1 Introduction to Algorithms L1.9 Example of insertion sort 824936

Example of insertion sort 824 36 284 99 36 Day 1 Introduction to Algorithms L1.10
Day 1 Introduction to Algorithms L1.10 Example of insertion sort 824936 284936
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《城市设计实例—步行商业》杭州湖滨旅游商贸特色街区.ppt
- 《教育心理学》(英文版)Theories Operant Conditioning.ppt
- 《教育心理学》(英文版)Theories:Operant Conditioning.ppt
- 《教育心理学》(英文版)Pavlov and Waston.ppt
- 《教育心理学》(英文版)Behavioral Learning Theories(Thorndike).ppt
- 《教育心理学》(英文版)Bandura’s Social Learning Theory.ppt
- 《教育心理学》(英文版)Learning:introduction.ppt
- 《教育心理学》(英文版)Behavioral Learning Theories.ppt
- 《教育心理学》(英文版)Theories of Development.ppt
- 《教育心理学》(英文版)The history and development of E P.ppt
- 《教育心理学》(英文版)Educational Psychology.ppt
- 《教育心理学》(英文版)Tolman.ppt
- 《教育心理学》(英文版)Gestalt Psychology.ppt
- 《教育心理学》(英文版)Gestalt Psychology(new).ppt
- 《教育心理学》(英文版)Bruner’s Learning Theory.ppt
- 《教育心理学》(英文版)Chapter 5 Cognitive Learning Theorie.ppt
- 《Visual FoxPro数据库与程序设计》第四章 关系数据库标准语言SQL.ppt
- 《Visual FoxPro数据库与程序设计》第十章 开 发应用程序.ppt
- 《Visual FoxPro数据库与程序设计》第六章 程序设计基础.ppt
- 《Visual FoxPro数据库与程序设计》第八章 菜单设计与应用.ppt
- 《算法入门》(英文版)Lecture 2 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 3 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 4 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 5 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 6 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 7 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 8 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 9 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 10 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 11 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 12 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 13 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 14 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 15 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 16 Prof. Charles E. Leiserson.pdf
- 《算法入门》(英文版)Lecture 17 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 18 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 19 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 20 Prof. Erik Demaine.pdf
- 《算法入门》(英文版)Lecture 21 Prof. Charles E. Leiserson.pdf