南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)平面图与图着色

计算机问题求解一论题3-14 图论中的其它专题 2020年12月16日
计算机问题求解 – 论题3-14 - 图论中的其它专题 2020年12月16日

平面图 (b)H: 2 间题1: 一个图是香为平面图与其 如何画法有关吗?
平面图

Theorem 9.1 (The Euler Identity)If G is a connected plane graph of order n,size m and having r regions,then n-m +r=2. 证明要点: 1,树是满足欧拉公式 2,反证法:如果除树外,欧拉公式不成立 2.1找一个边最少的图 如果我们用归纳 2.1.1必定存在回路 法证明该定理, 2.2去除回路上一条边,构造新图 该如何归纳? 2.2.1新图有n个点,m-1条边,r-1个区域 2.3新图满足欧拉公式(原图是最小的) 2.3.1n-(m-1)+(r-1)=2 2.3.2n-m+r=2 2.4矛盾 3,欧拉公式满足
证明要点: 1,树是满足欧拉公式 2,反证法:如果除树外,欧拉公式不成立 2.1 找一个边最少的图 2.1.1 必定存在回路 2.2 去除回路上一条边,构造新图 2.2.1 新图有n个点,m-1条边,r-1个区域 2.3 新图满足欧拉公式(原图是最小的) 2.3.1 n-(m-1)+(r-1) = 2 2.3.2 n-m+r=2 2.4 矛盾 3,欧拉公式满足 如果我们用归纳 法证明该定理, 该如何归纳?

问题2: 你是否在哪里里还见过“这个” 欧拉公式?

问题3: 必要条件可以判断什么? 欧拉公式在实际判断平面 图时有用吗?

简单连通平面图的必要条件 ■欧拉公式的推论:若G是简单连通平面图(≥3),则 m≤3n-6。 口证明:至少3个顶点的简单图G中,面的最小边数是3, ∴.3r≤2m,根据欧拉公式:3r=3m+6-3n,∴.3m+6-3n<2m,即: m≤3n-6。 ■K不是平面图:在K中,n=5,m=10,3n-6=9。 平面图中,边数是有上限的。请问,这个界是否紧致?
简单连通平面图的必要条件 ◼ 欧拉公式的推论:若G是简单连通平面图(n3), 则 m3n-6。 ❑ 证明:至少3个顶点的简单图G中,面的最小边数是3, 3r2m, 根据欧拉公式:3r=3m+6-3n, 3m+6-3n2m, 即: m3n-6。 ◼ K5不是平面图:在K5中,n=5,m=10, 3n-6=9。 平面图中,边数是有上限的。请问,这个界是否紧致?

问题4: 上述推论不能证明K33是非平面图 你能推出一个类似的推论用于K3.3吗? 二部图的一个区 域至少多少条边?
二部图的一个区 域至少多少条边?

同胚图 u ·基本动作: 口二次顶点的插入和消去 。 如果图G,和G经过反复的插入和消去二次顶点,可达到同构,则G,和 G,是同胚图
同胚图 ◼ 基本动作: ❑ 二次顶点的插入和消去 ◼ 如果图G1和G2经过反复的插入和消去二次顶点,可达到同构,则G1和 G2是同胚图。 u u v v w

图的收缩 ■基本动作: u O u c w (u,V) ■图的收缩
图的收缩 ◼ 基本动作: ◼ 图的收缩 u v u v e w (u,v)

平面图的充分必要条件 Kuratowsky定理 o 图G是平面图当且仅当G中不含与K或者K,3同胚的子图,也不含可以 收缩到K或者K33的子图
平面图的充分必要条件 ◼ Kuratowsky定理 ❑ 图G是平面图当且仅当G中不含与K5或者K3,3同胚的子图,也不含可以 收缩到K5或者K3,3的子图
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)最大流算法(一).pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)旅行问题.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)图的连通度.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)图中的匹配与覆盖.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)多源最短路径算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)图的计算机表示以及遍历.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)单源最短路径算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)用于动态等价关系的数据结构.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)树.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)贪心算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)摊还分析.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)图的基本概念.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)红黑树.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)动态规划.pptx
- 《计算机问题求解》课程参考书籍教材:《Introduction to Algorithms》PDF电子版(Third Edition,Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest、Clifford Stein).pdf
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)红黑树.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)搜索树.pptx
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)Hashing方法.pdf
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)B树.pptx
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)堆的结构、实现以及算法应用 Heap & HeapSort.pdf
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)最大流算法(二).pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)矩阵计算.pptx
- 《计算机问题求解》课程参考书籍教材:Abstract Algebra - Theory and Applications(Thomas W. Judson).pdf
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)数论基础.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)线性规划.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)置换群与拉格朗日定理.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)群同态基本定理与正规子群.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)群论初步.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)NP完全理论初步.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)代数编码.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)密码算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)数论算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)近似算法的基本概念.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)算法问题的形式化描述.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)启发式算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)总复习之形式化和建模.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)总复习之数据结构与算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)随机算法的概念.pptx
- 《计算机问题求解》课程参考书籍材料:《Problem Solving with C++》PDF电子版(Addison Wesley,2014,Ninth Edition,Walter Savitch).pdf
- 《计算机问题求解》课程教学资源(阅读材料)Go To Statement Considered Harmful(Dijkstra CACM 1968).pdf