北京大学:《模式识别》课程教学资源(参考资料)Data Clustering - 50 Years Beyond K-means

Data Clustering: 50 Years Beyond K-means Anil K.Jain Department of Computer Science Michigan State University 合
Data Clustering: 50 Years Beyond K -means Anil K. Jain Department of Computer Science Michigan State University

King-Sun Fu King-Sun Fu(1930-1985),a professor at Purdue was instrumental in the founding of IAPR,served as its first president,and is widely recognized for his extensive contributions to pattern recognition.(Wikipedia)
King-Sun Fu King-Sun Fu (1930-1985), a professor at Purdue was instrumental in the founding instrumental in the founding of IAPR of IAPR served as its first , served as its first president, and is widely recognized for his extensive contributions to pattern recognition. (Wikipedia)

Angkor Wat,Siem Reap Angfor Wat Combodia 了rw Hindu temple built by a Khmer king ~1150 AD; Khmer kingdom declined in the 15th century; French explorers discovered the hidden ruins in 1860 (Angelina Jolie alias "Lora Croft"in Tomb Raider thriller)
Angkor Wat, Siem Reap Hindu temple built by a Khmer king ~1150 AD; Khmer kingdom declined in the 15th century; French explorers discovered the hidden ruins in 1860 (Angelina Jolie alias Angelina Jolie alias Lora Croft in “Lora Croft ” in Tomb Raider thriller)

Apsaras of Angkor Wat Angkor Wat contains the most unique gallery of over 2,000 women depicted by detailed full body portraits What facial types are represented in these portraits? Kent Davis,Biometrics of the Godesess,DatAsia,Aug 2008 S.Marchal,Costumes et Parures Khmers:D'apres les devata D'Angkor-Vat,1927
Apsaras of Angkor Wat • Angkor Wat contains the most unique gallery of over 2,000 women depicted by detailed full body portraits • What facial types are represented in these portraits? Kent Davis, Biometrics of the Godesess, DatAsia, Aug 2008 S. Marchal, Costumes et Parures Khmers: D’apres les devata D’Angkor-Vat, 1927

Clustering of Apsara Faces Single Link 370 新第部 280 9105 783 6 127 landmarks oopppp8oooo C+ s卷±56电e0b++G+年o+9+ d g 94车年+++ 9 10 3 6 8 OX Xǒ Single Link clusters b o+9 +6半e +0p How do we validate the groups? Shape alignment
Clustering of Apsara Faces Single Link 127 facial landmarks 127 landmarks 1 2 9 10 3 4 6 5 7 8 Single Link clusters Shape alignment How do we validate the groups?

Ground Truth 整盛烟 666666665-- Khmer Cultural Center
Ground Truth Khmer Cultural Center

Data Explosion The digital universe was ~281 exabytes (281 billion gigabytes)in 2007;it would grow 10 times by 2011 Images and video,captured by over one billion devices (camera phones),are the major source To archive and effectively use this data,we need tools for data categorization http://eon.businesswire.com/releases/information/digital/prweb509640.htm http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf 尚
Data Explosion • Th di it l i 281 b t The digital universe was ~281 exabytes (281 billion gigabytes) in 2007; it would grow 10 times by 2011 • Images and video, captured by over one billion d i ( h ) th j devices (camera phones), are the major source • To archive and effectively use this data, we need tools for data categorization http://eon.businesswire.com/releases/information/digital/prweb509640.htm http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf

Data Clustering Grouping of objects into meaningful categories Classification vs.clustering Unsupervised learning,exploratory data analysis, grouping,clumping,taxonomy,typology,Q-analysis Given a representation of n objects,find K clusters based on a measure of similarity Partitional vs.hierarchical A.K.Jain and R.C.Dubes.Algorithms for Clustering Data,Prentice Hall,1988.(available for download at:http://dataclustering.cse.msu.edu/)
Data Clustering • Grouping of objects into meaningful categories • Classification vs. clustering • Unsupervised learning, exploratory data analysis, grouping clumping taxonomy typology Q grouping, clumping, taxonomy, typology, Q-analysis analysis • Given a representation of n objects, find K clusters based on a measure of based on a measure of similarity similarity • Partitional vs. hierarchical A. K. Jain and R. C. Dubes. Algorithms for Clustering Data, Prentice Hall, 1988. (available for download at: http g) ://dataclustering.cse.msu.edu/)

Why Clustering? Natural classification:degree of similarity among forms (phylogenetic relationship or taxonomy) Data exploration:discover underlying structure, generate hypotheses,detect anomalies Compression:method for organizing data Applications:any scientific field that collects data! Astronomy,biology,marketing,engineering,..... Google Scholar:~1500 clustering papers in 2007 alone!
Why Clustering? • Natural classification: degree of similarity among forms (phylogenetic relationship or taxonomy) • Data exploration: discover underlying structure, generate hypotheses, detect anomalies • Compression: method for organizing data • Applications: any scientific field that collects data! Astronomy, biology, marketing, engineering,….. Google Scholar: ~1500 clustering papers in 2007 alone!

Historical Developments Cluster analysis first appeared in the title of a 1954 article analyzing anthropological data (STOR) Hierarchical Clustering:Sneath (1957),Sorensen (1957) K-Means:independently discovered Steinhaus1(1956),Lloyd2 (1957),Cox3(1957),Bal∥&Hal(1967),MacQueen5(1967) Mixture models (Wolfe,1970) Graph-theoretic methods (Zahn,1971) .K Nearest neighbors (Jarvis Patrick,1973) Fuzzy clustering (Bezdek,1973) Self Organizing Map(Kohonen,1982) Vector Quantization (Gersho and Gray,1992) 1Acad.Polon.Sci.,2Bell Tel.Report,3JASA,4Behavioral Sci.,5Berkeley Symp.Math Stat Prob. 合口
Historical Developments • Cluster analysis first appeared in the title of a 1954 article analyzing anthropological data (JSTOR) • Hierarchical Clustering: Sneath (1957) Sorensen (1957) Sneath (1957) , Sorensen (1957) • K-Means: independently discovered Steinhaus 1 (1956), Lloyd2 (1957), Cox3 (1957), Ball & Hall4 (1967), MacQueen 5 (1967) • Mixture models (Wolfe, 1970 ) • Graph-theoretic methods (Zahn, 1971) • K Nearest neighbors (Jarvis & Patrick, 1973) • Fuzzy clustering (Bezdek, 1973) • Self Organizing Map (Kohonen, 1982) • Vector Quantization (Gersho and Gray, 1992) 1Acad. Polon. Sci., 2Bell Tel. Report, 3JASA, 4Behavioral Sci., 5Berkeley Symp. Math Stat & Prob
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《模式识别》课程教学资源(参考资料)Artificial neural networks - a tutorial.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Algorithms for Clustering Data.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)A Tutorial on Principal Component Analysis.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)A tutorial on Principal Components Analysis.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Sequential Minimal Optimization - A Fast Algorithm for Training Support Vector Machines.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Introduction to Support Vector Learning.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)A Tutorial on Support Vector Machines for Pattern Recognition.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Support vector machines.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Tutorial on maximum likelihood estimation.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Statistical Pattern Recognition - A Review.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Digital Image Processing.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)人工神经网络简介.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)非监督学习方法.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)特征的选择和提取(第二部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)特征的选择和提取(第一部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)监督模式识别方法总结.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)非线性判别函数(第二部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)近邻法.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)非线性判别函数(第一部分).pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Data Clustering - A Review.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Learning in Linear Neural Networks - A Survey.pdf
- 北京大学:《模式识别》课程教学资源(参考资料)Neural Networks for Classification - A Survey.pdf
- 未来互联网体系结构研究综述(PPT讲稿)Future Internet Architecture:From Network Virtualization to Clean- slate Post-IP.pdf
- 《计算机学报》:未来互联网体系结构研究综述(中国科学院计算技术研究所).pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验1 VF集成环境的使用.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验2 数据表的建立、维护和使用.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验3 常量、变量与函数的使用.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验4 数据库操作.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验5 VF程序设计基础.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验6 表单的建立与使用.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验7 表单控件的使用.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验8 报表设计.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验9 菜单设计.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)实验10 程序设计综合应用(学生成绩管理系统).pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)综合实验(简易计算器).pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)使用VF发送电邮及开启网页.pdf
- 《Visual Foxpro数据库应用技术》课程教学资源(实验课件)登录系统.pdf
- 《数字图像处理 Digital Image Processing》课程教学资源(课件讲稿)第1章 绪论.pdf
- 《数字图像处理 Digital Image Processing》课程教学资源(课件讲稿)第2章 数字图像处理基础.pdf