预测与时间序列(PPT讲稿)Non-Seasonal Box-Jenkins Models

Non-Seasonal box-Jenkins models
1 Non-Seasonal Box-Jenkins Models

Box-Jenkins(ARIMa) Models The Box-Jenkins methodology refers to a set of procedures for identifying and estimating time series models within the class of autoregressive integrated moving average(ARIMA)models ARIMA models are regression models that use lagged values of the dependent variable and/or random disturbance term as explanatory variables ARIMa models rely heavily on the autocorrelation pattern in the data This method applies to both non-seasonal and seasonal data. In this course we will only deal with non-seasonal data
2 Box-Jenkins (ARIMA) Models The Box-Jenkins methodology refers to a set of procedures for identifying and estimating time series models within the class of autoregressive integrated moving average (ARIMA) models. ARIMA models are regression models that use lagged values of the dependent variable and/or random disturbance term as explanatory variables. ARIMA models rely heavily on the autocorrelation pattern in the data This method applies to both non-seasonal and seasonal data. In this course, we will only deal with non-seasonal data

Box-Jenkins(ARIMa) Models Three basic ARIMA models for a stationary time series yt (1)Autoregressive model of order p(ar(p) y1=0+y1+如2y12+…+yn+E1 1. e,, y, depends on its p previous values (2) Moving Average model of order g malg) y 6+8,-61E,1-6,E t-2 t-9 1. e, y, depends on g previous random error terms
3 Box-Jenkins (ARIMA) Models Three basic ARIMA models for a stationary time series yt : (1) Autoregressive model of order p (AR(p)) i.e., yt depends on its p previous values (2) Moving Average model of order q (MA(q)) i.e., yt depends on q previous random error terms, t 1 t 1 2 t 2 p t p t y = + y + y + + y + − − − , t t 1 t 1 2 t 2 q t q y = + − − − − − − −

Box-Jenkins(ARIMa) Models (3)Autoregressive-moving average model of order p and g (arma(p, q) y=6+y=1+n2y2+…+yp +E.-6 t-1 g t-g . e, y, depends on its p previous values and q previous random error terms
4 Box-Jenkins (ARIMA) Models (3) Autoregressive-moving average model of order p and q (ARMA(p,q)) i.e., yt depends on its p previous values and q previous random error terms , 1 1 2 2 1 1 2 2 t t t q t q t t t p t p y y y y − − − − − − + − − − − = + + + +

Box-Jenkins(ARIMa) Models In an arima model. the random disturbance term E, is typically assumed to be"white noise;.e, it is identically and independently distributed with a mean of o and a common variance o across all observations e write d(0,a)
5 Box-Jenkins (ARIMA) Models In an ARIMA model, the random disturbance term is typically assumed to be “white noise”; i.e., it is identically and independently distributed with a mean of 0 and a common variance across all observations. We write ~ i.i.d.(0, ) t 2 t 2

a five-step iterative procedure Stationarity Checking and Differencing 2)Model Identification 3)Parameter Estimation 4)Diagnostic Checking 5) Forecasting
6 A five-step iterative procedure 1) Stationarity Checking and Differencing 2) Model Identification 3) Parameter Estimation 4) Diagnostic Checking 5) Forecasting

Step One: Stationarity checking
7 Step One: Stationarity checking

Stationarity Stationarity is a fundamental property underlying almost all time series statistical models a time series yt is said to be stationary if it satisfies the following conditions ( 1)E(=u, for all t (2)Var(y)=elo-u=o+ for all t ()Cov(y,, yi-k)=rk for all t
8 Stationarity “Stationarity” is a fundamental property underlying almost all time series statistical models. A time series yt is said to be stationary if it satisfies the following conditions: 2 2 (1) ( ) . (2) ( ) [( ) ] . (3) ( , ) . t y t t y y t t k k E y u for all t Var y E y u for all t Cov y y for all t − = = − = =

Stationarity The white noise series &, satisfies the stationarity condition because (1)E(6)=0 (2)Var()=02 (3)Cov(1s)= for all s≠0
9 Stationarity The white noise series satisfies the stationarity condition because (1) E( ) = 0 (2) Var( ) = (3) Cov( ) = for all s 0 t 2 t t t t s −

Example of a white noise series Time Series plot 100 20 Time 10
10 Example of a white noise series 4 8 12 16 20 24 28 32 36 100 80 60 40 20 0 Time Time Series Plot
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《保险学》课程教学资源(PPT课件讲稿)第二章 保险原则.ppt
- 国际服务贸易的基本类别(PPT课件讲稿)Basic Categories of International Trade in Services.ppt
- 《财务会计实务》课程教学资源(PPT课件讲稿)情境十三 财务报告.ppt
- 中国人民大学:《中级微观经济学》课程教学资源(PPT课件讲稿)第1讲 微观经济学原理回顾和经济模型方法(主讲:于泽).ppt
- 《财政学》课程教学资源(PPT课件讲稿)第六章 社会消费性支出(购买性支出之一).ppt
- 《中级财务会计》课程教学资源(PPT课件)第一章 财务会计基本理论.ppt
- 清华大学出版社:《银行会计》课程教学资源(PPT课件讲稿,共十一章,主编:韩维熙).ppt
- 《计量经济学》课程教学资源(PPT课件讲稿)第十章 时间序列分析.ppt
- 《微观经济学》课程教学资源(PPT课件讲稿)需求函数(Demand Function,D.F.).ppt
- 华北水利水电大学:《技术经济学》课程教学资源(PPT课件讲稿)第5章 假设检验(主讲:王红娜).pptx
- 《计量经济学》课程PPT教学课件(Econometrics)第五章 异方差.ppt
- 《证券投资学》课程教学资源(PPT讲稿)第五章 证券发行市场.ppt
- 丽水职业技术学院:《会计电算化》课程教学资源(PPT课件讲稿)销售与应收款管理系统初始设置.ppt
- 《博弈论》课程教学资源(PPT课件)STATIC(OR SIMULTANEOUS MOVE)GAMES OF INCOMPLETE INFORMATION.ppt
- 《国际经济学 International Economics》课程教学资源(PPT课件讲稿)Chapter 14 Exchange Rates and the Foreign Exchange Market - An Asset Approach.ppt
- 上海财经大学:《财务管理》课程教学资源(PPT课件讲稿)第六章 资本预算.ppt
- 《操作风险管理基础》教学资源(PPT讲稿)Chapter 4 Enterprise Risk Management and Related Topics.ppt
- 《管理会计》课程教学资源(PPT课件讲稿)第二章 成本性态分析和变动成本法.ppt
- 《基础会计》课程教学资源:考试大纲.pdf
- 《企业财务会计实务》课程教学资源(PPT课件讲稿)分岗会计实务(共三个模块).ppt
- 《基础会计》课程教学资源(PPT课件讲稿)第五章 账户与复式记账.ppt
- 《当代世界经济与政治》课程教学资源(PPT课件)第七章 发达资本主义国家经济与政治.ppt
- 惠州学院:《计量经济学 Econometrics》课程教学资源(PPT课件讲稿)第一章 绪论(谢鸿飞).ppt
- 华东理工大学:《金融市场学》课程教学资源(PPT课件讲稿,共九章,徐琤).ppt
- 丽水职业技术学院:《会计电算化》课程教学资源(PPT课件讲稿)存货核算系统日常业务处理.ppt
- Convertible bonds(PPT讲稿)Bond instruments with equity-linked features.pptx
- 《国际贸易理论与政策》课程教学资源(PPT课件)第十一章 出口鼓励与出口管制措施.ppt
- 《国际贸易 International Trade》课程教学资源(PPT课件讲稿)Chapter 5 Foreign Direct Investment(FDI)and transnational Corporations of Service Industry.ppt
- 基于供应链的企业税收筹划(PPT讲稿).ppt
- 《金融企业会计实务》课程电子教案(PPT课件)第九章 保险业务的核算(制作:汪本强).ppt
- 对外经济贸易大学:全球价值链测度方法与UIBE_GVC_Index(PPT讲稿,祝坤福).pptx
- 上海杉达学院:《宏观经济学》课程教学资源(PPT课件讲稿)第1章 经济学十大原理.ppt
- 新个人所得税相关政策(PPT讲稿).ppt
- 国家税务总局:六项专项附加扣除和扣缴申报操作指引(PPT讲稿,2018年12月).ppt
- 《产业经济学》课程教学资源(PPT课件讲稿)第四章 产业组织理论的产生与发展.ppt
- 海南大学:《财务报表分析》课程电子教案(PPT课件讲稿,主讲:孙容).ppt
- 《发展经济学》课程教学资源(PPT课件讲稿)第十章 国际金融.ppt
- 山西财经大学:事业单位会计准则及其会计制度解读(PPT讲稿,昝志宏).ppt
- 南充职业技术学院:《会计电算化》课程教学资源(PPT课件)第三章 账务处理系统.ppt
- 南充职业技术学院:《会计电算化》课程教学资源(PPT课件)第二章 会计软件的初始化设置.ppt