《Optical MEMS:Overview & MARS Modulator》

Optical MEMS Overview& MARS Modulator Joseph Ford, James Walker, Keith Goossen Lucent Technologies Bell Labs Innovations References: Silicon modulator based on mec hanically-active antire flection layer with 1 Mbit/sec capa bility K Goossen, J. Walker and S. Arney, IEEE Photonics Tech. Lett. 6, p 1119, 1994 Micromechanical fiber-optic attenuator with 3 microsecond response J. Ford, J. Walker, D. Greywall and K Goossen, IEEE J of Lightwave Tech 1609), 1663-1670, September 1998 Dynamic spectral power equalization using micro-opto-mechanics J. Ford and J. Walker, IEEE Photonics Technology Letters 10(10), 1440-1442, October 1998 Micromec hanical gain slope compensator for spectrally linear powerequalization K Goossen,J. Walker, D Neilson, J. Ford, w. Knox, IEEE Photonics Tech. Lett. 12(7), pp 831-833, July 2000 Wavelength add/drop switching using tilting micromirrors J. Ford, V. Aksyuk, D. Bishop and J. Walker, IEEE J of Lightwave Tech. 17(5),904-911, May 1999 A tunable dispersion compensating MEMS all-pass filter Madsen, Walker, Ford Goossen, Nielson, Lenz, IEEE Photonics Tech. Lett. 12(6), pp 651-653, June 2000
Optical MEMS: Overview & MARS Modulator Joseph Ford, James Walker, Keith Goossen References: “Silicon modulator based on mechanically-active antireflection layer with 1 Mbit/sec capability” K. Goossen, J. Walker and S. Arney, IEEE Photonics Tech. Lett. 6, p.1119, 1994 "Micromechanical fiber-optic attenuator with 3 microsecond response" J. Ford, J. Walker, D. Greywall and K. Goossen, IEEE J.of Lightwave Tech. 16(9), 1663-1670, September 1998 "Dynamic spectral power equalization using micro-opto-mechanics" J. Ford and J. Walker, IEEE Photonics Technology Letters 10(10), 1440-1442, October 1998 "Micromechanical gain slope compensator for spectrally linear power equalization" K. Goossen, J. Walker, D. Neilson, J. Ford, W. Knox, IEEE Photonics Tech. Lett.12(7), pp. 831-833, July 2000. "Wavelength add/drop switching using tilting micromirrors" J. Ford, V. Aksyuk, D. Bishop and J. Walker, IEEE J. of Lightwave Tech. 17(5), 904-911, May 1999. "A tunable dispersion compensating MEMS all-pass filter" Madsen, Walker, Ford. Goossen, Nielson, Lenz, IEEE Photonics Tech. Lett. 12(6), pp. 651-653, June 2000

What are MEMS? Micro-Electro-Mechanical Systems manufactured using technology created for VLSI electronics to build micron-scale devices released by selective etching Surface Micromachining ·LGA( electroforming) Deep Reactive lon Etching electrically controlled by Electrostatic attraction Electromagnetic force Photos courtesy Electrostriction Sandia National Labs Resistive heating Note:MEMS”≠ passive silicon v- grooves
What are MEMS? Micro-Electro-Mechanical Systems • Surface Micromachining • LIGA (electroforming) • Deep Reactive Ion Etching • Electrostatic attraction • Electromagnetic force • Electrostriction • Resistive heating Photos courtesy Sandia National Labs … manufactured using technology created for VLSI electronics to build micron-scale devices “released” by selective etching …& electrically controlled by Note: “MEMS” = passive silicon V-grooves

Mass commercial application: Acceleration Sensors Elastic hinge Proof mass Analog Devices' ADXL50 accelerometer Surface micromachining capacitive sensor Spacer 2.5x25 mm die incl. electronic controls Force Silicon substrate Cost: $30 vS -$300 bulk sensor( 93) Cut to $5/axis by 1998 Replaced by 3-axis ADXL 150 Capacitive Accelerometer 4mm CMOS Device area Micromechanical Device Area Mochanical circuit X-Axis Z-AxIs Ref. Circuit n-bpe silicon suberate Every new car sold has micromachined sensors on-board. They Y-Axi ange from MAP( Manifold Absolute Pressure)engine sensor accelerometers for active suspension systems, automatic door locks and antilock braking and airbag systems. The field is also widening considerably in other markets. Micromachined accelerometer sensors are now being used in seismic recording, machine monitoring, and circuitr Master: Clock diagnostic systems-or basically any application where gravity, shock, and vibration are http://w.analog.com/library/techarticles/mems/xlbckgdr4.html
Mass commercial application: Acceleration Sensors http://www.analog.com/library/techArticles/mems/xlbckgdr4.html Analog Devices' ADXL50 accelerometer Surface micromachining capacitive sensor 2.5 x 2.5 mm die incl. electronic controls Cost: $30 vs ~$300 bulk sensor (‘93) Cut to $5/axis by 1998 Replaced by 3-axis ADXL150 “Every new car sold has micromachined sensors on-board. They range from MAP (Manifold Absolute Pressure) engine sensors, accelerometers for active suspension systems, automatic door locks, and antilock braking and airbag systems. The field is also widening considerably in other markets. Micromachined accelerometer sensors are now being used in seismic recording, machine monitoring, and diagnostic systems - or basically any application where gravity, shock, and vibration are factors.” Capacitive Accelerometer Silicon substrate Elastic hinge Proof Mass Spacer Force

Mass commercial application: Pressure Sensors 51258023 s春币Pa13 Membrane RC time P Space Force Silicon substrate Capacitive Pressure Sensor Piezo-resistive pressure sensor High-pressure gas sensor (ceramic surface-mount NovaSensor's piezo-resistive pressure sensors Disposable medical sensor
Mass commercial application: Pressure Sensors Capacitive Pressure Sensor Silicon substrate Pint Pext Spacer Membrane Force Measure RC time NovaSensor’s piezo-resistive pressure sensors Disposable medical sensor High-pressure gas sensor (ceramic surface-mount) Piezo-resistive pressure sensor

Electrical actuation of active MEMS devices Force Apply Apply → EM coil Curren Electrostatic attraction Electromagnetic force Apply Voltage ↑ Force Apply Force Electrostriction Resistive heating
substrate magnetic layer EM coil conductive substrate conductive layer insulator substrate patterned resistive layer substrate electrostrictive layer Force Force Force Force Apply Current Apply Voltage Electrical actuation of active MEMS devices Electrostatic attraction Electrostriction Resistive heating Electromagnetic force Apply Current Apply Voltage

Surface Micromachining: Layer by layer addition Starting from bare silicon wafer, deposit pattern multiple layers to form a(shippable)MEMS wafer 10 mask steps METAL METAL Silicon Substrate Patterned con Substrate Photoresist Completed MEMS wafer Silicon substrat PoLY重 Poly o P。lyo Etch Diced and released mems device Release isotropic chemical etch to remove oxides Special techniques may be used to remove liquid (e.g, critical point drying) Silicon Substrate Assembly= mechanical manipulation of structures (e.g., raising and latching a vertical mirror plate) Various techniques used, some highly proprietary FromCronos/jdsuMumpsuserguideatwww.Memsrus.com
Surface Micromachining: Layer by layer addition Starting from bare silicon wafer, deposit & pattern multiple layers to form a (shippable) MEMS wafer From Cronos/JDSU MUMPS user guide at www.MEMSRUS.com Assembly = mechanical manipulation of structures (e.g., raising and latching a vertical mirror plate) Various techniques used, some highly proprietary Release = isotropic chemical etch to remove oxides Special techniques may be used to remove liquid (e.g., critical point drying) Diced and released MEMS device Completed MEMS wafer ~ 10 mask steps

st TEx Optical mems device PHOTONICS AND MICROMACHINING INSTRUMENTS DIGITAL MICROMIRROR DEVICE DLP PROJECTOR 96365-39 CORPORATE RESEARCH DEVELOPMENT
Texas Instruments Digital Light Projector & DLP PROJECTOR TM 1 st Optical MEMS device

Bulk MEMS Fabrication Pattern selective etch Example:Bulk silicon DRIE: start with unpatterned wafer stack-a wafer-bonded SOl(silicon on insulat (1)Pattern photoresist (2 )DRIE vertical etch photoresist wafer-bonded silicon sacrificial silicon oxide bulk silicon substrate (3)SiO isotropic etch (4)Gold evaporation Narrow features released Wide features just undercut Gold mirrors on top and potentially sides ◎imt rommel
Bulk MEMS Fabrication: Pattern & selective etch (2) DRIE vertical etch samlab bulk silicon substrate Example: Bulk silicon DRIE: start with unpatterned wafer stack – a wafer-bonded SOI (silicon on insulator) wafer-bonded silicon sacrificial silicon oxide (1) Pattern photoresist photoresist (4) Gold evaporation Gold mirrors on top and potentially sides (3) SiO2 isotropic etch Narrow features released, Wide features just undercut

Bulk silicon EMS Devices 100N 726Ku oot Magn WD 070 130 IMT- SAMLAB Single-axis tilt-mirror photo courtesy r Conant, BSAC Comb-drive switch photo courtesy IMT(Neuchatel)
“Bulk Silicon” MEMS Devices Single-axis tilt-mirror photo courtesy R. Conant, BSAC Comb-drive switch photo courtesy IMT (Neuchatel)

MEMS reliability? 171 page report by D M. Tanner et al, SAND2000-0091, January 2000es MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Mode SN3388- bottom impact Micromotor test device 40,000G impact test Failure by rubbing contact Comb-drive actuator Ceramic package destroyed Wear on silicon surface Flexural contact to gears MEMS Survives() Submicron particles generated Conclusions (1) Properly designed MEMs devices are remarkably shock resistant (2) Flexural failures due to fatigue were not apparent (3)Rubbing wear (& resulting debris)was their primary failure mechanism Sandia national laboratories Intelligent Micromachine Initiative www.sandia.gov
MEMS reliability? Conclusions: (1) Properly designed MEMS devices are remarkably shock resistant (2) Flexural failures due to fatigue were not apparent (3) Rubbing wear (& resulting debris) was their primary failure mechanism 40,000G impact test Ceramic package destroyed MEMS survives (!) Micromotor test device Comb-drive actuator Flexural contact to gears Failure by rubbing contact Wear on silicon surface Submicron particles generated “MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Modes” 171 page report by D. M. Tanner et al, SAND2000-0091, January 2000. www.sandia.gov
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《模拟电子技术基础》课程PPT教学课件(第五版)第九章 信号处理与信号产生电路(2/2).ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第九章 信号处理与信号产生电路(1/2).ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第八章 功率放大电路.ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第七章 反馈放大电路.ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第六章 模拟集成电路.ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第五章 场效应管放大电路.ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第四章 双极结型三极管及放大电路基础(1/2).ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第四章 双极结型三极管及放大电路基础(2/2).ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第三章 二极管及其基本电路.ppt
- 模拟电子技术基础(第五版)第二章 运算放大器(康华光).ppt
- 模拟电子技术基础(第五版)第十章 直流稳压电源(康华光).ppt
- 《模拟电子技术基础》课程PPT教学课件(第五版)第一章 绪论(康华光).ppt
- 《电子技术基础》课程教学资源(习题,数字部分)第七章 习题答案.doc
- 《电子技术基础》课程教学资源(习题,数字部分)第六章 习题答案.doc
- 《电子技术基础》课程教学资源(习题,数字部分)第四章 组合逻辑习题解答.doc
- 《电子技术基础》课程教学资源(习题,数字部分)第三章 逻辑门电路习题解答.doc
- 《电子技术基础》课程教学资源(习题,数字部分)第二章 逻辑代数习题解答.doc
- 《电子技术基础》课程教学资源(习题,数字部分)第一章 数字逻辑习题答案.doc
- 湖北师范学院物理系:《电路分析》第九章 正弦稳态电路的分析(王成艳).ppt
- 湖北师范学院物理系:《电路分析》第八章 相量法(王成艳).ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)绪论.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第1章 矢量分析.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第2章 电磁学基本理论.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第3章 媒质的电磁性质和边界条件.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第4章 静态场分析.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第5章 场论和路论的关系.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第6章 平面电磁波.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第7章 规则波导和空腔谐振器.ppt
- 西北工业大学:《电磁场与电磁波》课程教学资源(PPT电子教案)第8章 电磁波的辐射.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第四章 模拟信号的数字化.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第五章 基带数字信号的表示和传输.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第六章 基本的数字调制系统.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第七章 同步.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第八章 数字信号最佳接收原理.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第九章 多路复用和多址技术.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第十章 信道编码和差错控制.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第十一章 先进的数字带通调制和解调.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第十二章 信息理论.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第十三章 通信网.ppt
- 电子工业出版社:《通信原理教程》课程PTT教学课件(第2版)第十四章 通信安全.ppt