清华大学:图神经网络及其应用(PPT讲稿)Graph Neural Networks and Applications

Graph Neural Networks and Applications Jie Tang Computer Science Tsinghua University The slides can be downloaded at http://keg.cs.tsinghuaeducn/jietang
1 Graph Neural Networks and Applications Jie Tang Computer Science Tsinghua University The slides can be downloaded at http://keg.cs.tsinghua.edu.cn/jietang

Networked world facebook Alibaba Group 里巴巴集团 ·2 billion mau >777 million trans. (alipay) 26.4 billion minutes/day ·200 billion on11/11 twitter 新浪微博 weibo. com 320 million mau ·462 million users ·Peak:143 K tweets/s influencing our daily life instagram 头系今日头条 700 million Mau 1.5 billion mau ·95 million pics/day 70 minutes/user/day snapchat ·300 million mau QQ 860 million mau ·30 minutes/use/day WeChat: 1.1 billion Mau
2 Networked World • 2 billion MAU • 26.4 billion minutes/day • 462 millionusers • influencing our daily life • 320 millionMAU • Peak: 143K tweets/s •QQ: 860 million MAU • WeChat: 1.1 billion MAU • 700 millionMAU • 95 million pics/day • >777 million trans. (alipay) • 200 billion on 11/11 • 300 millionMAU • 30 minutes/user/day • ~1.5 billion MAU • 70 minutes/user/day

Mining big Graphs/Networks An information/social graph is made up of a set of individuals/entities (nodes)tied by one or more interdependency (edges), such as friendship Mining big networkS: A field is emerging that leverages the capacity to collect and analyze data at a scale that may reveal patterns of individu and group behaviors.” 1. David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Alber-Laszlo Barabasi, et aL. Computational Social Science. Science 2009
3 Mining Big Graphs/Networks • An information/social graph is made up of a set of individuals/entities (“nodes”) tied by one or more interdependency (“edges”), such as friendship. 1. David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Alber-Laszlo Barabasi, et al. Computational Social Science. Science 2009. Mining big networks: “A field is emerging that leverages the capacity to collect and analyze data at a scale that may reveal patterns of individual and group behaviors.” [1]

Let us start with an example Social influence and prediction
4 Let us start with an example —Social influence and prediction

Social Influence: Love Trump Trump makes I hate Trump, the USa great again worst president ever Trump is fantastic Trump is great No Trump in 2020 He cannot be the next president O Positive ONe
5 Social Influence: “Love Trump” Trump makes USA great again Trump is great! Trump is fantastic I hate Trump, the worst president ever He cannot be the next president! No Trump in 2020! Positive Negative

Beyond Peer Influence Influence is a very complicated mechanism Peer influence Conformity influence Structural influence Tahl I Lanier ad different comunale suchan or Positive or negative?
6 Beyond Peer Influence • Influence is a very complicated mechanism – Peer influence – Conformity influence – Structural influence or ? Positive or negative?

Social prediction in Tencent networks Example: King of Glory(王者荣耀 o。9E F C OA C OIA Who are more likely to be"active", V, or v2? e.g., active ="call-back King of Glory O Active neighbor O Inactive neighbor User to be influenced 1. J. Qiu, J. Tang, H Ma, Y Dong, K Wang, and J. Tang. DeepInf: Social Influence Prediction with Deep Learning. KDD18
7 Social prediction in Tencent networks Active neighbor Inactive neighbor v User to be influenced Who are more likely to be “active”, v1 or v2? v A B D E F C v H A B H D E F C v1 v2 e.g., active = “call-back King of Glory” Example: King of Glory (王者荣耀) 1. J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang. DeepInf: Social Influence Prediction with Deep Learning. KDD'18

Structural Influence B C 2.5 25 2.0 2.0 2.0 co28 至::[:至 型0.5 0.5 Contact ma已边m-e 1. J Gander, L Backstrom, C Marlow, J Kleinberg. Structural diversity in social contagion. PNAS, 2012, 109(16)5962-5966
8 Structural Influence 1. J. Ugander, L. Backstrom, C. Marlow, J. Kleinberg. Structural diversity in social contagion. PNAS, 2012, 109 (16) 5962-5966

Influence Learning Learning influence in signed triads And apply the triadic influence for prediction REGRESSION ANALYSIS FOR 30 KINDS OF TRIADS Triad Coet Coef Triad 008272 0.0110*享 3画◎|00543 0.0004 @|00429 (0.003) (0.004) (0.003) (0.004) 5 (0.003) 6·|087 7o00.020586-o.0313% 9|4083 00070●0168* (0.002) 10012ooau‖sy .0563 -00221 14 (0.002) 5 0.0157* (0.001) (0003) 6画@0167*17 0.0164 (0.003) 画00841900032 0.0066年 0.002) -0.0001 20.0090 8600534-2466-0. o 0.0089* (0.002) (0002) (0.002) (0.002) (0.001) 0.0783哪 0.0818·审 0.0494*率 00 0.002) 30画0072 (0.002)
9 Influence Learning • Learning influence in signed triads • And apply the triadic influence for prediction

Possible solution Influence features hand craft features E> predictive model Name Description oneness Pagerank [30 Hub score and authority score [8] Vertex Eigenvector Centrality [5] oo Class +1 Clustering Coefficient [46] Rarity(reciprocal of ego user's degree)[1] Network embedding(DeepWalk [31], 64-dim) The number/ratio of active neighbors [2] Class-1 Ego Density of subnetwork induced by active neighbors [40] edictive #Connected components formed by active neighbors [40] model But defining features is tedious and inefficient
10 Possible Solution • Influence features + Hand craft features predictive model + Class -1 Class +1 predictive model But defining features is tedious and inefficient…
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机网络》课程PPT教学课件(英文版)Chapter 4 物理层 PHYSICAL LAYER.pptx
- 南京大学:《数据结构 Data Structures》课程教学资源(PPT课件讲稿)Chapter 1 基本概念和算法分析.ppt
- 安徽理工大学:《算法导论》课程教学资源(PPT课件讲稿)第4章 分治法——“分”而治之.ppt
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Transition System(主讲:卜磊).pptx
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第四章 语法分析.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第四章 网络层.pptx
- 《ASP动态网页设计实用教程》教学资源(PPT课件讲稿)第3章 Web页面制作基础.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第四章 语法制导的翻译.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)顺序同一性的存储器模型.pptx
- 马尔可夫链蒙特卡洛算法(PPT讲稿)Hamiltonian Monte Carlo on Manifolds,HMC.pptx
- SOFT COMPUTING Evolutionary Computing(PPT讲稿).ppt
- 《计算机情报检索原理》课程教学资源(PPT课件)第五章 自动标引.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)Chapter 04 网络层 Network Layer.ppt
- 湖南科技大学:分布式工作流系统的时间管理模型研究(PPT讲稿,周春姐).ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第九章 独立于机器的优化.ppt
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第七章 数字签名和密码协议.ppt
- 南京大学:移动Agent系统支撑(PPT讲稿)Mobile Agent Communication——Software Agent.pptx
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第五章 存储层次.ppt
- 合肥工业大学:《网络安全概论》课程教学资源(PPT课件讲稿)第一讲 网络安全概述.ppt
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第六章 中间代码生成.ppt
- 《计算模型与算法技术》课程教学资源(PPT讲稿)Chapter 8 Dynamic Programming.ppt
- Network and System Security Risk Assessment(PPT讲稿)Firewall.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第三讲 认证技术与数字签名.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)Chapter 04 网络层 Network Layer.ppt
- 《时间序列分析及应用》课程教学资源(PPT课件讲稿)第二章 时间序列的预处理.ppt
- 中国科学技术大学:《算法基础》课程教学资源(PPT课件讲稿)算法基础习题课(二).pptx
- 中国科学技术大学:《计算机编程入门》课程PPT教学课件(讲稿)An Introduction to Computer Programming.ppt
- 上海交通大学:《挖掘海量数据集 Mining Massive Datasets》课程教学资源(PPT讲稿)Lecture 03 Frequent Itemsets and Association Rules Mining Massive Datasets.ppt
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,6th edition)Chapter 3 传输层 Transport Layer.ppt
- 分布式数据库系统的体系结构与设计(PPT讲稿)Architecture and Design of Distributed Database Systems.pptx
- 南京大学:Conceptual Architecture View(PPT讲稿).ppt
- 北京师范大学:《计算机应用基础》课程教学资源(PPT课件讲稿)第1章 计算机常识(主讲:马秀麟).pptx
- 《编译原理》课程教学资源(PPT课件讲稿)中间代码生成.pptx
- TTCN3工具培训(PPT讲稿)TTCN-3简介.ppt
- 《Java Web编程技术》课程教学资源(PPT课件讲稿)第4章 JDBC数据库访问技术.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第三章 流水线技术.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第2章 物理层.ppt
- 《计算机视觉》课程教学资源(PPT课件讲稿)基于灭点几何的深度图重建、基于焦点变换的深度图重建.ppt
- 中国科学技术大学:《数据结构及其算法》课程电子教案(PPT课件讲稿)第七章 图.pps
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第4章 存储层次结构设计.pptx