马尔可夫链蒙特卡洛算法(PPT讲稿)Hamiltonian Monte Carlo on Manifolds,HMC

Hamiltonian monte carlo on Manifolds Chang liu 2015-09-14
Hamiltonian Monte Carlo on Manifolds Chang Liu 2015-09-14

Outline ntroduction to hamiltonian monte carlo Riemann manifold Langevin and hamiltonian Monte Carlo methods(Girolami Calderhead 2011) Geodesic monte carlo on embedded Manifolds Byrne Girolami, 2013)
Outline • Introduction to Hamiltonian Monte Carlo • Riemann manifold Langevin and Hamiltonian Monte Carlo methods (Girolami & Calderhead, 2011) • Geodesic Monte Carlo on Embedded Manifolds (Byrne & Girolami, 2013)

Introduction to hamiltonian Monte carlo (Ref: Neal, 2011) History Overview Hamiltonian Dynamics MCMC from Hamiltonian dynamics lustrations of hmc and its benefits
Introduction to Hamiltonian Monte Carlo (Ref: Neal, 2011) • History • Overview • Hamiltonian Dynamics • MCMC from Hamiltonian dynamics • Illustrations of HMC and its benefits

History Background: for the task of simulating the distribution of states for a system of idealized molecules (Metropolis, et al., 1953 MCMC with Metropolis test (Alder Wainwright, 1959 ): deterministic approach by simulating Hamiltonian dynamics Birth: combining(hybrid) (Duane, et al., 1987): Hybrid Monte Carlo. Renamed as Hamiltonian monte carlo afterwards Application to statistics (Neal, 1993ab probabilistic inference and Bayesian learning (Neal, 1996a]: neural network models (Ishwaran, 1999 ): generalized linear models
History • Background: for the task of simulating the distribution of states for a system of idealized molecules, – (Metropolis, et al., 1953): MCMC with Metropolis test. – (Alder & Wainwright, 1959): deterministic approach by simulating Hamiltonian dynamics. • Birth: combining (hybrid) – (Duane, et al., 1987): Hybrid Monte Carlo. Renamed as Hamiltonian Monte Carlo afterwards. • Application to statistics – (Neal, 1993ab): probabilistic inference and Bayesian learning – (Neal, 1996a): neural network models – (Ishwaran, 1999): generalized linear models – …

Overview The metropolis-Hastings method for sampling from the target distribution p( by a proposal transition distribution q(xtlxt-1 Sample xt-1 from q(xlxt-1 Set xt=xt-1 with probability 11. pcxi-1dqxt-ikxi-i22 otherwise set xt =xt-1 x t-1t-1 Hamiltonian dynamics can be seen as a proposal generator it provides a deterministic proposal from xt-1 to xt-1 with p(x)invariant. So the acceptance rate is high and the samples are less correlated
Overview • The Metropolis-Hastings method for sampling from the target distribution 𝑝 𝑥 by a proposal transition distribution 𝑞 𝑥𝑡 𝑥𝑡−1 : – Sample 𝑥𝑡−1 ∗ from 𝑞 𝑥 𝑥𝑡−1 – Set 𝑥𝑡 = 𝑥𝑡−1 ∗ with probability min 1, 𝑝 𝑥𝑡−1 ∗ 𝑞 𝑥𝑡−1 𝑥𝑡−1 ∗ 𝑝 𝑥𝑡−1 𝑞 𝑥𝑡−1 ∗ 𝑥𝑡−1 , otherwise set 𝑥𝑡 = 𝑥𝑡−1 • Hamiltonian dynamics can be seen as a proposal generator: it provides a deterministic proposal from 𝑥𝑡−1 to 𝑥𝑡−1 ∗ with 𝑝 𝑥 invariant. So the acceptance rate is high and the samples are less correlated

Overview Applied to MCMC: given a target distribution p(x HMC provides proposals not for x but the augmented random variable z=(x, v) with stationary distribution p(z)a exp (H(z)), where H(z==logp(x)+v M1/2. note that p(x=p(r, so samples of z will provide correct samples of x For practice: simulate the hamiltonian dynamics by some discrete integrator(e. g. leap frog that keeps some certain properties of the hamilton dynamics(e.g. symplectic symmetric consistent) correct the discretization error by mh test
Overview • Applied to MCMC: given a target distribution 𝑝 𝑥 , HMC provides proposals not for 𝑥 but the augmented random variable 𝑧 = 𝑥, 𝑣 with stationary distribution 𝑝 𝑧 ∝ exp −𝐻 𝑧 , where 𝐻 𝑧 = −log 𝑝 𝑥 + 𝑣 ⊤𝑀𝑣/2. Note that 𝑝 𝑥 = 𝑝 𝑥 , so samples of 𝑧 will provide correct samples of 𝑥. • For practice: simulate the Hamiltonian dynamics by some discrete integrator (e.g. leap frog) that keeps some certain properties of the Hamilton dynamics (e.g. symplectic, symmetric, consistent); correct the discretization error by MH test

Hamiltonian Dynamics Hamiltonians equation a dynamic system with degree of freedom d can be described by a d-dim vector q( generalized coordinate)and a d-dim vector p( generalized momentum, defined by p i ac(a, a, t) in physics), z=(q,p is called the canonical coordinates The dynamic system is dominated by its Hamiltonian: H (q, p, t)=iqipi L(a, q tlg=g(p If U does not change with time, H(a,p, t)=h(q, p), in which case H(q,p)=u+ K is the energy of the system
Hamiltonian Dynamics • Hamiltonian’s Equation – A dynamic system with degree of freedom 𝑑 can be described by a 𝑑-dim vector 𝑞 (generalized coordinate) and a 𝑑-dim vector 𝑝 (generalized momentum, defined by 𝑝𝑖 = 𝜕ℒ 𝑞,𝑞ሶ,𝑡 𝜕𝑞ሶ𝑖 in physics), 𝑧 = (𝑞, 𝑝) is called the canonical coordinates. – The dynamic system is dominated by its Hamiltonian: 𝐻 𝑞, 𝑝,𝑡 = σ𝑖 𝑞ሶ 𝑖𝑝𝑖 − ℒ(𝑞, 𝑞ሶ.𝑡)ȁ𝑞ሶ=𝑞ሶ 𝑝 . If 𝑈 does not change with time, 𝐻 𝑞, 𝑝,𝑡 = 𝐻(𝑞, 𝑝), in which case 𝐻 𝑞, 𝑝 = 𝑈 + 𝐾 is the energy of the system

Hamiltonian Dynamics Hamilton s equations The system evolves following aH H q dz Alternative expression JVH(), where dt d×d d×d d×d 0 dxd For HMC, h(q,p)=u(a)+k(p, k(p)=p M-lp/2 qi =[m pli aU =agi
Hamiltonian Dynamics • Hamilton’s Equations – The system evolves following: 𝑞ሶ 𝑖 = 𝜕𝐻 𝜕𝑝 𝑝ሶ 𝑖 = − 𝜕𝐻 𝜕𝑞 – Alternative expression: 𝑑𝑧 𝑑𝑡 = 𝐽𝛻𝐻 𝑧 , where 𝐽 = 0𝑑×𝑑 𝐼𝑑×𝑑 −𝐼𝑑×𝑑 0𝑑×𝑑 – For HMC, 𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾 𝑝 ,𝐾 𝑝 = 𝑝 𝑇𝑀−1𝑝/2, 𝑞ሶ 𝑖 = 𝑀−1𝑝 𝑖 𝑝ሶ 𝑖 = − 𝜕𝑈 𝜕𝑞𝑖

Hamiltonian dynamics Properties of Hamiltonian Dynamics - Reversibility The mapping Is determined by Hamiltonian's equation from(a(t),p(t) to( q(t +s),p(t +s)) is one to one The inverse mapping is just negate p and apply Ts( See the Hamilton's equation Conservation of the hamiltonian The system evolves with its hamiltonian unchanged dh d ∑ dq: ah dp; aH ∑ ah ahaHaH 0 i=1 api agi aqi api
Hamiltonian Dynamics • Properties of Hamiltonian Dynamics – Reversibility • The mapping 𝑇𝑠 determined by Hamiltonian’s equation from 𝑞 𝑡 ,𝑝 𝑡 to 𝑞 𝑡 + 𝑠 ,𝑝 𝑡 + 𝑠 is one to one. The inverse mapping is just negate 𝑝 and apply 𝑇𝑠 . (See the Hamilton’s equation.) – Conservation of the Hamiltonian • The system evolves with its Hamiltonian unchanged:

Hamiltonian dynamics Properties of hamiltonian Dynamics Volume Preservation(Liouville' s theorem ): the volume V of a region R in the phase space((g, p) space)is preserved under the transformation Ts Proof: letz=(q,p),V=J R(tq么 z·dS= dt ar(t) Rt(. i)dz, 卩·z=卩.(q,p) .+妞-∑两/∑Dnm1 a ah a 0H 0 i=1 dgi opi api dgi
Hamiltonian Dynamics • Properties of Hamiltonian Dynamics – Volume Preservation (Liouville’s theorem): the volume 𝑉 of a region 𝑅 in the phase space ((𝑞, 𝑝) space) is preserved under the transformation 𝑇𝑠 • Proof: let 𝑧 = (𝑞, 𝑝), 𝑉 = �� �� 𝑑𝑧, 𝑑𝑉 𝑑𝑡 �� �𝜕�ׯ = 𝑧ሶ ⋅ 𝑑𝑆 = �� �� 𝛻 ⋅ 𝑧ሶ 𝑑𝑧, 𝛻 ⋅ 𝑧ሶ = 𝛻 ⋅ 𝑞ሶ, 𝑝ሶ =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- SOFT COMPUTING Evolutionary Computing(PPT讲稿).ppt
- 《计算机情报检索原理》课程教学资源(PPT课件)第五章 自动标引.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)Chapter 04 网络层 Network Layer.ppt
- 湖南科技大学:分布式工作流系统的时间管理模型研究(PPT讲稿,周春姐).ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第九章 独立于机器的优化.ppt
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第七章 数字签名和密码协议.ppt
- 南京大学:移动Agent系统支撑(PPT讲稿)Mobile Agent Communication——Software Agent.pptx
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第五章 存储层次.ppt
- 合肥工业大学:《网络安全概论》课程教学资源(PPT课件讲稿)第一讲 网络安全概述.ppt
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第六章 中间代码生成.ppt
- 《编译原理与技术》课程教学资源(PPT课件讲义)中间代码生成.ppt
- 《软件测试 Software Testing》教学资源(PPT讲稿)Part 3 Applying Your Testing Skills.ppt
- 电子工业出版社:《计算机网络》课程教学资源(PPT课件讲稿)第1章 概述.pptx
- 《计算机算法设计与分析》课程教学资源(PPT课件讲稿)分支界限法.ppt
- 中国科学技术大学:《数据结构及其算法》课程电子教案(PPT课件讲稿)第7章 图(主讲:刘东).pptx
- 兰州大学:搜索引擎的使用(PPT讲稿,主讲 杨青).ppt
- Folksonomies and Social Tagging(PPT讲稿).ppt
- Enabling SOA Using Messaging(PPT讲稿).ppt
- 《大学计算机基础》课程教学资源(PPT课件讲稿)第三章 字处理软件Word 2003.ppt
- 烟台理工学院:《算法与数据结构》课程教学资源(PPT课件)第1章 绪论(主讲:高慧).ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)顺序同一性的存储器模型.pptx
- 《编译原理》课程教学资源(PPT课件讲稿)第四章 语法制导的翻译.ppt
- 《ASP动态网页设计实用教程》教学资源(PPT课件讲稿)第3章 Web页面制作基础.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第四章 网络层.pptx
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第四章 语法分析.ppt
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Transition System(主讲:卜磊).pptx
- 安徽理工大学:《算法导论》课程教学资源(PPT课件讲稿)第4章 分治法——“分”而治之.ppt
- 南京大学:《数据结构 Data Structures》课程教学资源(PPT课件讲稿)Chapter 1 基本概念和算法分析.ppt
- 《计算机网络》课程PPT教学课件(英文版)Chapter 4 物理层 PHYSICAL LAYER.pptx
- 清华大学:图神经网络及其应用(PPT讲稿)Graph Neural Networks and Applications.pptx
- 《计算模型与算法技术》课程教学资源(PPT讲稿)Chapter 8 Dynamic Programming.ppt
- Network and System Security Risk Assessment(PPT讲稿)Firewall.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第三讲 认证技术与数字签名.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)Chapter 04 网络层 Network Layer.ppt
- 中国科学技术大学:《算法基础》课程教学资源(PPT课件讲稿)算法基础习题课(二).pptx
- 中国科学技术大学:《计算机编程入门》课程PPT教学课件(讲稿)An Introduction to Computer Programming.ppt
- 上海交通大学:《挖掘海量数据集 Mining Massive Datasets》课程教学资源(PPT讲稿)Lecture 03 Frequent Itemsets and Association Rules Mining Massive Datasets.ppt
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,6th edition)Chapter 3 传输层 Transport Layer.ppt
- 分布式数据库系统的体系结构与设计(PPT讲稿)Architecture and Design of Distributed Database Systems.pptx
- 南京大学:Conceptual Architecture View(PPT讲稿).ppt