西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 4B Continous Time Filter Design Part B Design of Analog Filters

Design of Analog Filters Chapter 4B Part B .Analog Lowpass Filter Specifications ●●● ●●● ●●● Butterworth Approximation Digital Processing of Design of Other Types of Analog Filters Continuous-Time Signals Design of Analog Filters 1.Analog Lowpass Filter 1.Analog Lowpass Filter 1.Analog Lowpass Filter Specifications Specifications Specifications Typical magnitude response of an analog ·In the passband,.defined by0≤2s2。,we --passband edge frequency lowpass filter may be given as indicated require1-8n≤H(j2≤1+6,l2s2 ,--stopband edge frequency below 旧到 i.e..H()approximates unity within an 1+ error of t. .--peak ripple value in the passband --peak ripple value in the stopband 。in the stopband,defined by2,≤2≤o,we require|H.(j2≤d,2,≤Ω≤oi.e,lH.(U2 Peak passband ripple approximates zero within an error of a。=-20logo1-6,)dB Minimum stopband attenuation a,=-20logio()dB
Chapter 4B Digital Processing of Continuous-Time Signals Part B Design of Analog Filters Design of Analog Filters Analog Lowpass Lowpass Filter Specifications Filter Specifications Butterworth Approximation Design of Other Types of Analog Filters Design of Other Types of Analog Filters 1. Analog Lowpass Filter Specifications Typical magnitude response of an analog lowpass filter may be given as indicated below ( ) H j a 0 p s 1 p 1 p s c pass band stop band transition band 1. Analog Lowpass Filter Specifications In the passband, defined by , we require i.e., approximates unity within an error of In the stopband, defined by , we require i.e., approximates zero within an error of 0 p 1 ( )1 , p H j a pp ( ) H j a p s () , H j a ss ( ) H j a s 1. Analog Lowpass Filter Specifications -- passband edge frequency -- stopband edge frequency -- peak ripple value in the passband -- peak ripple value in the stopband Peak passband ripple Minimum stopband attenuation p s p s 10 p p 20log (1 ) dB 10 s s 20log ( ) dB

2.Butterworth Approximation 2.Butterworth Approximation 2.Butterworth Approximation The magnitude-square response of an N-th Typical magnitude responses with =1 order analog lowpass Butterworth Filter is .Gain in dB is G()=10logioH(j)dB given by ●AsG(0)=0 dB and H.0f=1+1 1 G2.)=101og1o(0.5)=-3.0103≈-3dB .First 2N-I derivatives of H(j)at =0 is called the 3-dB cutoff frequency are equal to zero The Butterworth lowpass filter thus is said to have a maximally-flat magnitude at =0 2.Butterworth Approximation 2.Butterworth Approximation 2.Butterworth Approximation Two parameters completely characterizing a According to the definition of the loss Butterworth lowpass filter are and N function ·Suppose 1 They are determined from the specified a=10l0gio 1010-1 H(2 k= bandedges andand minimum 1010-1 passband magnitude H(j )and 。We know that1 maximum stopband magnitude H(,) 1*Q) 。Then H( 2 and Nare thus determined from lg H,n,f=1+,1a严 H,a,f=1+a.1a,严 1+ -10品 2. =10品1+
2. Butterworth Approximation The magnitude-square response of an N-th order analog lowpass Butterworth Filter Butterworth Filter is given by First 2Nˉ1 derivatives of at are equal to zero The Butterworth lowpass filter thus is said to have a maximally-flat magnitude flat magnitude at 2 2 1 ( ) 1( / ) a N c H j 2 ( ) H j a 0 0 2. Butterworth Approximation Gain in dB is As G(0)=0 dB and is called the 3-dB cutoff frequency 10 G( ) 10lo c g (0.5) 3.0103 3 dB c 2 10 G Hj ( ) 10lo g a ( ) dB 2. Butterworth Approximation Typical magnitude responses with 1 c 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 Analog angular frequency in rad/s Magnitude N=2 N=4 0.7071 N=10 2. Butterworth Approximation Two parameters completely characterizing a Butterworth lowpass filter are and N They are determined from the specified bandedges bandedges and , and minimum passband magnitude magnitude , and maximum stopband magnitude magnitude and N are thus determined from c p s ( ) H j a p ( ) H j a s c 2 2 1 ( ) 1( / ) a p N p c H j 2 2 1 ( ) 1( / ) a s N s c H j 2. Butterworth Approximation According to the definition of the loss function We know that 10 2 1 10log H j ( ) 2 2 1 1 ( ) N H j c 2 10 1 10 p N p c 2 10 1 10 s N s c 2. Butterworth Approximation Suppose Then lg lg k N s p 10 10 10 1 10 1 p s k

2.Butterworth Approximation 2.Butterworth Approximation 2.Butterworth Approximation .Since order Nmust be an integer,value Since H(s)H (-s)evaluated at s=j is Hence,the transfer function of an analog obtained is rounded up to the next highest simply equal to H(),it follows that Butterworth lowpass filter has the form of integer 1 H.(s)H(-s)= C H.(s)= n Q This value of Nis used next to determine by satisfying either the stopband edge or the 1+(←s212 D6g+∑dF'T6-m passband edge specification exactly The poles of this expression occur on a circle Where If the stopband edge specification is satisfied, of radius at equally spaced points B=2.es2M,1=l,2,N then the passband edge specification is Because of the stability and causality.the Denominator D(s)is known as the exceeded providing a safety margin transfer function itself will be specified by just Butterworth polynomial of order N the poles in the negative real half-plane ofs 3.Design of Other Types of 3.Design of Other Types of 2.Butterworth Approximation Analog Filters Analog Filters Example- Highpass Filter Lets denote the Laplace transform variable of Determine the lowest order of a Butterworth Stepl Develop of specifications of a prototype analog lowpass filter H(s)and s lowpass filter with a I dB cutoff frequency at prototype analog lowpass filter Hs)from denote the Laplace transform variable of 1 kHz and a minimum attenuation of 40 dB at specifications of desired analog filter Hp(s) desired analog filter Hp(3) 5 kHz 1 using a frequency(spectrum)transformation. The mapping froms-domain to $-domain is 1+(2000x12 Step 2 Design the prototype analog lowpass given by the invertible transformations=F(s) filter 1=-40 Then 1+(10000r/2.)2 Step 3 Determine the transfer function Hps) HD向=Hn(slFo N=logo 10-1 10805=3.2811 of desired analog filter by applying the Hi(s)=Hp()-) 10-1 inverse frequency transformation to H(s)
2. Butterworth Approximation Since order N must be an integer integer, value obtained is rounded up to the next highest integer This value of N is used next to determine by satisfying either the stopband edge or the passband edge specification exactly If the stopband edge specification is satisfied, then the passband edge specification is exceeded providing a safety margin 2. Butterworth Approximation Since evaluated at is simply equal to , it follows that The poles of this expression occur on a circle of radius at equally spaced points Because of the stability and causality, the transfer function itself will be specified by just the poles in the negative real half negative real half-plane of s H sH s a a () ( ) s j 2 ( ) H j a 2 2 1 () ( ) 1 / a a N c H sH s s c 2. Butterworth Approximation Hence, the transfer function of an analog Butterworth lowpass filter has the form of Where Denominator is known as the Butterworth polynomial Butterworth polynomial of order N 1 0 1 ( ) ( ) ( ) N N c c a N l N N N l l l l C H s D s s ds s p [ ( 2 1)/ 2 ], 1, 2, , j Nl N l c p e lN ( ) DN s 2. Butterworth Approximation Example Example – Determine the lowest order of a Butterworth lowpass filter with a 1 dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz 10 2 1 10log 1 1 (2000 / ) N c 10 2 1 10log 40 1 (10000 / ) N c 0.1 10 10 4 10 1 1 log log 3.2811 10 1 5 N ! " # 3. Design of Other Types of Analog Filters Highpass Highpass Filter Step1 Develop of specifications specifications of a prototype analog lowpass filter HLP(s) from specifications of desired analog filter HD(s) using a frequency (spectrum) frequency (spectrum) transformation. Step 2 Design the prototype analog lowpass filter Step 3 Determine the transfer function HD(s) of desired analog filter by applying the inverse frequency transformation to HLP(s) 3. Design of Other Types of Analog Filters Let s denote the Laplace transform variable of prototype analog lowpass filter HLP(s) and denote the Laplace transform variable of desired analog filter The mapping from s -domain to -domain is given by the invertible transformation Then s ˆ s ˆ ( )ˆ H s D s Fs ( )ˆ 1 ( )ˆ ˆ ( ) () () ˆ () ()ˆ D LP sFs LP D sF s Hs H s H s Hs

3.Design of Other Types of Analog Filters Spectral Transformation (Lowpass to Highpass) s=22 where is the passband edge frequency of H(s)and is the passband edge frequency of H(s) On the imaginary axis the transformation is 2=-92 Ω
3. Design of Other Types of Analog Filters Spectral Transformation (Lowpass Lowpass to Highpass Highpass) where is the passband edge frequency of dddd and is the passband edge frequency of On the imaginary axis the transformation is ˆ ˆ P P s s P ( ) H s LP ˆ P ( )ˆ H s HP ˆ ˆ P P
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 4A Digital Signal Processing of Continuous Signals Part A Sampling of Continuous-Time Signals.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 3B Frequency Response Part B Frequency Response.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 3A Discrete Time Fourier Transforms Part A DTFT.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 2B Discrete Time Systems Part B Discrete-Time Systems.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 2A Discrete Time Signals Part A Discrete-Time Signals.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 1 Signals and Signal Processing(主讲:李勇朝).pdf
- 西安电子科技大学:《Complex Analysis》课程教学资源(讲义)Chapter 6 Residue Theory.pdf
- 西安电子科技大学:《Complex Analysis》课程教学资源(讲义)Chapter 5 Series Representations for Analytic Functions.pdf
- 西安电子科技大学:《Complex Analysis》课程教学资源(讲义)Chapter 4 Complex Integration.pdf
- 西安电子科技大学:《Complex Analysis》课程教学资源(讲义)Chapter 3 Elementary Functions.pdf
- 西安电子科技大学:《Complex Analysis》课程教学资源(讲义)Chapter 2 Analytic Functions.pdf
- 西安电子科技大学:《Complex Analysis》课程教学资源(讲义)Chapter 1 Complex Numbers(主讲:李勇朝).pdf
- 西安电子科技大学:《卫星通信系统》课程教学资源(课件讲稿)第一章 绪论(主讲:田红心).pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第八章 LDPC码.pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第九章 Polar码.pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第六章 Turbo码.pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第五章 卷积码的译码算法.pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第七章 编织码.pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第四章 卷积码.pdf
- 中国科学技术大学:《编码理论》课程教学资源(课件讲义)第二章 基础理论.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 5A Finite Length Discrete Transforms Part A The Discrete Fourier Transform(DFT).pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 5B Finite-Length Discrete Transforms Part B Discrete Fourier Transform Properties.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 6A z-Transform.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 6B Inverse z-Transform.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 6C Transfer Functions.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 7A LTI System in Transform Domain Part A Types of Transfer Functions.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 7B LTI System in Transform Domain Part B Simple Digital Filters.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 8 Digital Filter Structure.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 9A IIR Filter Design Part A Preliminary Considerations.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 9B IIR Filter Design Part B IIR Digital Filter Design.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 10A FIR Filter Design.pdf
- 西安电子科技大学:《Digital Signal Processing》课程教学资源(课件讲稿)Chapter 10B FIR Filter Design Part B Computer-Aided Design of FIR Digital Filters.pdf
- 西安电子科技大学:《电磁场与电磁波》课程教学资源(PPT课件)课程简介 Field and Wave Electromagnetics(主讲:吴边).ppt
- 辽宁农业职业技术学院:《光纤通信技术》课程教学资源(试卷习题)考试题及答案.doc
- 国家开放大学:2016年秋季学期“开放专科”城市轨道交通运营管理专业轨道交通信号与通信系统期末试题(1月).pdf
- 国家开放大学:2013—2014学年第一学期“开放专科”机械制造(模具设计)专业电工电子技术期末试题(1月).pdf
- 唐山广播电视大学:《电工电子技术》课程教学资源(作业习题)同步练习一第一章(含答案).doc
- 唐山广播电视大学:《电工电子技术》课程教学资源(作业习题)同步练习七第七章(含答案).doc
- 唐山广播电视大学:《电工电子技术》课程教学资源(作业习题)同步练习三第三章(含答案).doc
- 唐山广播电视大学:《电工电子技术》课程教学资源(作业习题)同步练习九第九章(含答案).doc