《土木与环境工程》(英文版) Stick breaking problem

URBAN OPERATIONS RESEARCH PROFESSOR ARNOLD I BARNETT LECTURE NOTE OF 9/ 26/2001 PREPARED BY JAMES S. KANG Stick breaking problem Consider a stick of length 1. Let XI and X2 be independent random variables denoting two points n the stick at which we break the stick into three pieces. We assume that X1 and X2 are uniformly distributed over the interval [ 0,1] Let Xs= min(X1, X2) and XL= max(X1, X2). We denote by L1, L2, and Lg the length the three pieces from the left end of the stick LI L2 L3 0 Figure 1: Breaking a stick of length 1 into three pieces We want to compute the probability that L1, L2, and L form a triangle. Clearly, the three pieces can form a triangle if the length of the longest piece is not greater than the sum of the lengths of the other two pieces. Let us consider the complementary question to the original question: What is the probability that L1, L2, and L3 cannot form a triangle? There are three cases for which the three pieces cannot form a triangle: Case I: L1 >l2+l Since L1+ L2+ L=l, P(no triangle via case I) is given by P(1>+L3)=P(L1>1-)=P(>2)=P(xs>2 Note that P(Xs>2)=P(X1 and X2 >2). Because X1 and X2 are independent, we have P(X1 and X2> P(X1>2)PX2>2)=22=4 Case II: L2>L1+ l3 P(no triangle via case II)is given by P2>L1+1a)=P2>2)=P(xn-xs>2)=P(x-x2l>2) It is not difficult to show P(IX1-X2l >5=. Geometrically, it is the area of the event IX1-X2l>5 over a square of side length 1
Urban Operations Research Professor Arnold I. Barnett Lecture Note of 9/26/2001 Prepared by James S. Kang Stick Breaking Problem Consider a stick of length 1. Let X1 and X2 be independent random variables denoting two points on the stick at which we break the stick into three pieces. We assume that X1 and X2 are uniformly distributed over the interval [0, 1]. Let XS ≡ min(X1, X2)and XL ≡ max(X1, X2) . We denote by L1, L2, and L3 the lengths of the three pieces from the left end of the stick. 0 XS XL 1 L1 L2 L3 Figure 1: Breaking a stick of length 1 into three pieces We want to compute the probability that L1, L2, and L3 form a triangle. Clearly, the three pieces can form a triangle if the length of the longest piece is not greater than the sum of the lengths of the other two pieces. Let us consider the complementary question to the original question: What is the probability that L1, L2, and L3 cannot form a triangle? There are three cases for which the three pieces cannot form a triangle: • Case I: L1 > L2 + L3 Since L1 + L2 + L3 = 1, P(no triangle via case I)is given by P(L1 > L2 + L3) = P(L1 > 1 − L1) = P(L1 > 1 2 ) = P(XS > 1 2 ) . Note that P(XS > 1 2 ) = P(X1 and X2 > 1 2 ). Because X1 and X2 are independent, we have P(X1 and X2 > 1 2 ) = P(X1 > 1 2 )P(X2 > 1 2 ) = 1 2 · 1 2 = 1 4 . • Case II: L2 > L1 + L3 P(no triangle via case II)is given by P(L2 > L1 + L3) = P(L2 > 1 2 ) = P(XL − XS > 1 2 ) = P(|X1 − X2| > 1 2 ) = 1 4 . It is not difficult to show P(|X1 − X2| > 1 2 ) = 1 4 . Geometrically, it is the area of the event |X1 − X2| > 1 2 over a square of side length 1. 1

· Case III:I3>L1+L2 P(no triangle via case III)= by symmetry with case I Since the three cases are mutually exclusive, the probability that L1, L2, and L cannot form a triangle is 4 +i+5=3. Therefore the probability that the three pieces of the stick form a triangle is1-是=1
• Case III: L3 > L1 + L2 P(no triangle via case III)= 1 4 by symmetry with case I. Since the three cases are mutually exclusive, the probability that L1, L2, and L3 cannot form a triangle is 1 4 + 1 4 + 1 4 = 3 4 . Therefore the probability that the three pieces of the stick form a triangle is 1 − 3 4 = 1 4 . 2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《土木与环境工程》(英文版) Crofton's Method.pdf
- 《环境生物学》讲义.ppt
- 宝鸡文理学院:《环境监测》第一章绪论.ppt
- 宝鸡文理学院:《环境监测》第三章 空气和废气监测.ppt
- 宝鸡文理学院:《环境监测》第二章 水和废水监测.ppt
- 《NOx的产生机理及排放控制技术》讲义.ppt
- 《世界八大公害事件》讲义.ppt
- 浙江台州学院:《环境工程设计基础》ppt电子书.ppt
- 《动力设备水处理手册》PDF电子书.pdf
- 高等教育出版社:《环境监测》PDF电子书(共十章,附十八个课程实验).pdf
- 中华人民共和国环境保护行业标准:《地表水和污水监测技术规范》.pdf
- 《大气污染治理工程》讲义(PPT课件).ppt
- 清华大学:《高等水处理》第三章 活性炭吸附.pdf
- 《大气污染治理工程》PDF电子书.pdf
- 厦门大学:《海洋环境化学》课程教学资源(PPT课件讲稿)第九章 海洋合成有机化合物污染 Maine Persistent Organic Pollutants(POPs)9.4 海洋有机磷农药污染 9.5 海洋合成洗涤剂污染.ppt
- 厦门大学:《海洋环境化学》课程教学资源(PPT课件讲稿)第九章 海洋合成有机化合物污染 Maine Persistent Organic Pollutants(POPs)9.1 海洋合成有机污染物概述 9.2 海洋有机氯农药污染 9.3 海洋多氯.ppt
- 厦门大学:《海洋环境化学》课程教学资源(PPT课件讲稿)第四章 海洋石油污染 Oil pollution of the sea(4.4.4.5).ppt
- 厦门大学:《海洋环境化学》课程教学资源(PPT课件讲稿)第四章 海洋石油污染 Oil pollution of the sea(4.1-4.3).ppt
- 厦门大学:《海洋环境化学》课程教学资源(PPT课件讲稿)Chap.6 Marine eutrophication and Red tide(case study).ppt
- 厦门大学:《海洋环境化学》课程教学资源(PPT课件讲稿)Chap.5 Marine eutrophication and Red tide(part 3).ppt
- 《土木与环境工程》(英文版) Too Close for Comfort.pdf
- 《土木与环境工程》(英文版) Topics in Queuing Theory.pdf
- 《土木与环境工程》(英文版) Massachusetts Institute of Technology.pdf
- 《土木与环境工程》(英文版) Tables and Figures.pdf
- 《土木与环境工程》(英文版) Queuing Systems: Lecture 5.pdf
- 《土木与环境工程》(英文版) Queuing Systems: Lecture 4.pdf
- 《土木与环境工程》(英文版) Queuing Systems: Lecture 6.pdf
- 《土木与环境工程》(英文版)Queuing Systems: Lecture 3.pdf
- 《土木与环境工程》(英文版) Queuing Systems: Lecture 2.pdf
- 《土木与环境工程》(英文版) Optimally Locating Facilities on a Network.pdf
- 《土木与环境工程》(英文版) Logistical and Transportation Planning Methods.pdf
- 《土木与环境工程》(英文版) Spatially distributed Queues.pdf
- 《土木与环境工程》(英文版) Transportation Network Analysis.pdf
- 《土木与环境工程》(英文版) Spatially Distributed Queues II.pdf
- 《环境学概论》第二章 水体环境.ppt
- 《环境学概论》第一章 环境、环境问题与环境科学.ppt
- 《环境学概论》第七章 固体废物的处理与利用.ppt
- 《环境学概论》第三章 大气污染与防治.ppt
- 《环境学概论》第二章 生态学基础.ppt
- 《环境学概论》第八章 环境评价.ppt