《航空航天动力学》英文版 lecture8 Examples Using Lagrange's Equations

16.61 Aerospace Dynamics Spring 2003 Lecture #8 Examples Using Lagrange's Equations Massachusetts Institute of Technology C How, Deyst 2003( Based on notes by Blair 2002
16.61 Aerospace Dynamics Spring 2003 Lecture #8 Examples Using Lagrange's Equations Massachusetts Institute of Technology © How, Deyst 2003 (Based on notes by Blair 2002) 2

16.61 Aerospace Dynamics Spring 2003 Example Given: Catapult rotating at a constant rate(frictionless, in the horizontal plane) Find the eom of the particle as it leaves the tube y x Massachusetts Institute of Technology C How-Deyst 2003(Based on Notes by Blair 2002
16.61 Aerospace Dynamics Spring 2003 Example Given: Catapult rotating at a constant rate (frictionless, in the horizontal plane) Find the EOM of the particle as it leaves the tube. ω x y Massachusetts Institute of Technology © How-Deyst 2003 (Based on Notes by Blair 2002) 1

16.61 Aerospace Dynamics Spring 2003 Derivatives d/aT dT =nmro dr dt dr External forces: None Lagrange's equation gives the equation of motion as i-ro=0 What do we get if we solve this via Newtons method? Massachusetts Institute of Technology C How-Deyst 2003(Based on Notes by Blair 2002
r r 16.61 Aerospace Dynamics Spring 2003 Derivatives: ∂T = mrD, d ∂T = mrDD, ∂T = mrω2 ∂ D dt ∂ D ∂r External forces: None Lagrange’s equation gives the equation of motion as r r CC− ω2 = 0 What do we get if we solve this via Newton’s method? Massachusetts Institute of Technology © How-Deyst 2003 (Based on Notes by Blair 2002) 3

16.61 Aerospace Dynamics Spring 2003 上 Xample Mass particle in a frictionless spinning ring Ring spins at constant rate a Spherical coordinate set (2-11) Two holonomic constraints o r= constant ·φ=ot+ po which gives the spin rate of the tube So only 1 doF- use 0 as the generalized coordinate Massachusetts Institute of Technology C How-Deyst 2003(Based on Notes by Blair 2002
16.61 Aerospace Dynamics Spring 2003 Example Mass particle in a frictionless spinning ring. Ring spins at constant rate ω m θ g r ω m θ g r ω Spherical coordinate set (2-11) Two holonomic constraints • r = constant • φ = ωt+φ0 which gives the spin rate of the tube So only 1 DOF � use θ as the generalized coordinate Massachusetts Institute of Technology © How-Deyst 2003 (Based on Notes by Blair 2002) 1

16.61 Aerospace Dynamics Spring 2003 Example le System of 3"" suspended by pulleys Neglect mass of pulleys.) y Massachusetts Institute of Technology C How-Deyst 2003(Based on Notes by Blair 2002)
16.61 Aerospace Dynamics Spring 2003 Example System of 3 “particles” suspended by pulleys. (Neglect mass of pulleys.) g m1 m2 m3 l h y1 y2 s1 s2 s3 g Massachusetts Institute of Technology © How-Deyst 2003 (Based on Notes by Blair 2002) 1

16.61 Aerospace Dynamics Spring 2003 Example le 2 particles in a frictionless tube held by springs. Assume that s=0 and a=0 g m, 70=const Motor Elevator Massachusetts Institute of Technology C How-Deyst 2003(Based on Notes by Blair 2002
16.61 Aerospace Dynamics Spring 2003 Example 2 particles in a frictionless tube held by springs. Assume that s = 0 and a = 0 Elevator ω = const. a g s k1 k2 k3 m1 m2 Elevator Motor ω = const. a g s k1 k2 k3 m1 m2 Massachusetts Institute of Technology © How-Deyst 2003 (Based on Notes by Blair 2002) 1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《航空航天动力学》英文版 lecture 7 Lagrange's equations.pdf
- 《航空航天动力学》英文版 lecture 6 NUMERICAL SOLUTION.pdf
- 《航空航天动力学》英文版 Lecture12 RIGId BoDY DYNAnIC.pdf
- 《航空航天动力学》英文版 lecture11 KINEMATIcs oF Rigid &o DIEs.pdf
- 《航空航天动力学》英文版 Lecture 10 Friction in Lagrange's Formulation.pdf
- 《航空航天动力学》英文版(一) lecture5.pdf
- 《航空航天动力学》英文版(一) lecture4.pdf
- 《航空航天动力学》英文版(一) lecture3.pdf
- 《航空航天动力学》英文版(一) lecture2.pdf
- 《航空航天动力学》英文版(一) lecture1a.pdf
- 《航空航天动力学》英文版(一) lecture1a(1).pdf
- 《非线性动力学》(英文版) Lecture 13 Feedback linearization.pdf
- 《非线性动力学》(英文版) Lecture 11 Volume Evolution And System Analysis.pdf
- 《非线性动力学》(英文版) Lecture 12 Local controllability.pdf
- 《非线性动力学》(英文版) Lecture 10 Singular Perturbations and Averaging.pdf
- 《非线性动力学》(英文版) Lecture 9 Local Behavior Near Trajectories.pdf
- 《非线性动力学》(英文版) Lecture 6 Storage Functions And Stability Analysis.pdf
- 《非线性动力学》(英文版) Lecture 8 Local Behavior at eqilibria.pdf
- 《非线性动力学》(英文版) Lecture 7 Finding Lyapunov Functions.pdf
- 《非线性动力学》(英文版) Lecture 4 Analysis Based On Continuity.pdf
- 《航空航天动力学》英文版 lecture 9 Virtual Work And the Derivation of Lagrange's Equations.pdf
- 南京航空航天大学:《飞机结构设计》课程PPT教学课件(讲稿)第9章 飞机的气动弹性.pdf
- 南京航空航天大学:《飞机结构设计》课程PPT教学课件(讲稿)第8章 起落架.pdf
- 麻省理工学院:《Space Policy Seminar》notes1a.pdf
- 麻省理工学院:《Space Policy Seminar》fiftiesnotes.pdf
- 麻省理工学院:《Space Policy Seminar》notes1b.pdf
- 麻省理工学院:《Space Policy Seminar》notes2 partb.pdf
- 麻省理工学院:《Space Policy Seminar》notes2.pdf
- 麻省理工学院:《Space Policy Seminar》notes2 partc.pdf
- 麻省理工学院:《Space Policy Seminar》sixtiesnotes.pdf
- 麻省理工学院:《Space Policy Seminar》seventiesnotes.pdf
- 麻省理工学院:《Space Policy Seminar》eightiesnotes.pdf
- 麻省理工学院:《Space Policy Seminar》lawandpolicy.pdf
- 麻省理工学院:《Space Policy Seminar》ninetiesnotes.pdf
- 美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 1.pdf
- 美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture3.pdf
- 美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 5.pdf
- 美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 2.pdf
- 美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 7.pdf
- 美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 4.pdf