麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 05&06 Introduction to Queueing Theory

Lectures 5&6 6263/1637 Introduction to Queueing Theory Eytan Modiano MIT LIDS
Lectures 5 & 6 6.263/16.37 Introduction to Queueing Theory Eytan Modiano MIT, LIDS Eytan Modiano Slide 1

Packet Switched Networks Messages broken into Packets that are routed To their destination 一烟 Packet Network APS Buffer Packet →工m Switch
Packet Switched Networks Packet Network PS PS PS PS PS PS PS Buffer Packet Switch Messages broken into Packets that are routed To their destination Eytan Modiano Slide 2

Queueing Systems Used for analyzing network performance In packet networks, events are random Random packet arrivals Random packet lengths While at the physical layer we were concerned with bit-error-rate at the network layer we care about delays How long does a packet spend waiting in buffers How large are the buffers In circuit switched networks want to know call blocking probability How many circuits do we need to limit the blocking probability?
Queueing Systems • Used for analyzing network performance • In packet networks, events are random – Random packet arrivals – Random packet lengths • While at the physical layer we were concerned with bit-error-rate, at the network layer we care about delays – How long does a packet spend waiting in buffers ? – How large are the buffers ? • In circuit switched networks want to know call blocking probability – How many circuits do we need to limit the blocking probability? Eytan Modiano Slide 3

Random events Arrival process Packets arrive according to a random process Typically the arrival process is modeled as Poisson The Poisson process Arrival rate of n packets per second Over a small interval s P(exactly one arrival)=n8+oo) P(O arrivals)=1-n8+o(8 P(more than one arrival =08 Where0(6y6→>08→>0. It can be shown that: 27 P(n arrivalsininterval T (r)e
Random events • Arrival process – Packets arrive according to a random process – Typically the arrival process is modeled as Poisson • The Poisson process – Arrival rate of λ packets per second – Over a small interval δ, P(exactly one arrival) = λδ + ο(δ) P(0 arrivals) = 1 - λδ + ο(δ) P(more than one arrival) = 0(δ) Where 0(δ)/ δ −> 0 �� δ −> 0. – It can be shown that: P(n arrivalsininterval T)= ( λT)n e−λT n! Eytan Modiano Slide 4

The poisson process P(n arrivalsinintervalT) (A”e n= number of arrivals in t It can be shown that EIn= nT E[r21]=T+(T)2 2=E[(n-E[n)2]=E[n2]-E[m]2=T
The Poisson Process P(n arrivalsininterval T) = ( λT ) n e − λT n! n = number of arrivals in T It can be shown that, E[n] = λT E[n 2 ] = λT + (λT) 2 σ 2 = E[(n -E[n]) 2 ] = E[n 2 ] - E[n] 2 = λT Eytan Modiano Slide 5

Inter-arrival times Time that elapses between arrivals(A) P(At) =1-P(0 arrivals in time t This is known as the exponential distribution Inter-arrival CDF FIA(t=1-e-t Inter-arrival PDF d/dt Fa(t=he-t The exponential distribution is often used to model the service times(e the packet length distribution
Inter-arrival times • Time that elapses between arrivals (IA) P(IA t) = 1 - P(0 arrivals in time t) = 1 - e-λt • This is known as the exponential distribution – Inter-arrival CDF = FIA (t) = 1 - e-λt – Inter-arrival PDF = d/dt FIA(t) = λe-λt • The exponential distribution is often used to model the service times (I.e., the packet length distribution) Eytan Modiano Slide 6

Markov property( Memoryless) P(T≤6+|T>t0)=P(T≤1) Pr oof P(T≤+|7>10) P(tto he- dt e e A(0) A(0) P(T≤t) Previous history does not help in predicting the future Distribution of the time until the next arrival is independent of when the last arrival occurred!
Markov property (Memoryless) P ( T ≤ t0 + t | T > t0 ) = P ( T ≤ t) Pr oof : P ( T ≤ t0 + t | T > t0 ) = P ( t0 t0 ) t 0 +t ∫ λe − λtdt − e − λt |t0 t0 + t − e − λ ( t +t 0 ) + e − λ ( t0 ) t 0 = ∞ = = ∞ e − λ ( t0 ) ∫ λe− λtdt − e − λt | t 0 t0 = 1 − e − λt = P ( T ≤ t) • Previous history does not help in predicting the future! • Distribution of the time until the next arrival is independent of when the last arrival occurred! Eytan Modiano Slide 7

Example Suppose a train arrives at a station according to a Poisson process with average inter-arrival time of 20 minutes When a customer arrives at the station the average amount of time until the next arrival is 20 minutes Regardless of when the previous train arrived The average amount of time since the last departure is 20 minutes! Paradox: If an average of 20 minutes passed since the last train arrived and an average of 20 minutes until the next train then an average of 40 minutes will elapse between trains But we assumed an average inter-arrival time of 20 minutes What ha appened?
Example • Suppose a train arrives at a station according to a Poisson process with average inter-arrival time of 20 minutes • When a customer arrives at the station the average amount of time until the next arrival is 20 minutes – Regardless of when the previous train arrived • The average amount of time since the last departure is 20 minutes! • Paradox: If an average of 20 minutes passed since the last train arrived and an average of 20 minutes until the next train, then an average of 40 minutes will elapse between trains – But we assumed an average inter-arrival time of 20 minutes! – What happened? Eytan Modiano Slide 8

Properties of the Poisson process Merging property )→∑k k Let A1, A2,... Ak be independent Poisson Processes of rate 2122..k A=∑A1 is also poisson of rate=∑41 Splitting property Suppose that every arrival is randomly routed with probability P to stream 1 and(1-P)to stream 2 Streams 1 and 2 are Poisson of rates Ph and (1-P)h respectively 入P 入 p(1-P)
Properties of the Poisson process • Merging Property λ1 λ2 ∑ λi λk Let A1, A2, … Ak be independent Poisson Processes of rate λ1, λ2, … λk A = ∑ Ai is also Poisson of rate = ∑ λi • Splitting property – Suppose that every arrival is r andomly routed with probability P to stream 1 and (1-P) to stream 2 – Streams 1 and 2 are Poisson of rates P λ and (1-P) λ respectively P 1-P λP λ λ(1−P) Eytan Modiano Slide 9

Queueing Models Customers server Queue/buffer Model for Customers waiting in line Assembly line Packets in a network(transmission line) Want to know Average delay experienced by a customer 3 Average number of customers in the syster Quantities obtained in terms of Arrival rate of customers (average number of customers per unit time Service rate (average number of customers that the server can serve per unit time)
Queueing Models Customers Queue/buffer • Model for – Customers waiting in line – Assembly line – Packets in a network (transmission line) • Want to know – Average number of customers in the system – Average delay experienced by a customer • Quantities obtained in terms of – Arrival rate of customers (average number of customers per unit time) – Service rate (average number of customers that the server can serve per unit time) server Eytan Modiano Slide 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 08&09 M/G/1 Queues.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 03&04 The Data Link Layer:ARQ Protocols.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lecture 02 The Data Link Layer:Framing and Error Detection.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)howto.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)projectinfo.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)reportgd.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)projectresources.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)projectsuggestions.pdf
- 《模拟电子技术》课程教学资源(练习题)第十章 直流电源.doc
- 《模拟电子技术》课程教学资源(练习题)第九章 功率放大电路.doc
- 《模拟电子技术》课程教学资源(练习题)第八章 波形的发生和信号的转换.doc
- 《模拟电子技术》课程教学资源(练习题)第七章 信号的运算和处理.doc
- 《模拟电子技术》课程教学资源(练习题)第六章 放大电路中的反馈.doc
- 《模拟电子技术》课程教学资源(练习题)第五章 放大电路的频率响应.doc
- 《模拟电子技术》课程教学资源(练习题)第五章 放大电路的频率响应.doc
- 《模拟电子技术》课程教学资源(练习题)第三章 多级放大电路.doc
- 《模拟电子技术》课程教学资源(练习题)第二章 基本放大电路.doc
- 《模拟电子技术》课程教学资源(练习题)第一章 半导体基础知识.doc
- 《模拟电子技术》课程教学资源(教材讲义)第10章 直流电源.doc
- 《模拟电子技术》课程教学资源(教材讲义)第9章 功率放大电路.doc
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lecture 07 Burke’s Theorem and Networks of Queues.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 10&11 Reservations Systems M/G/1 queues with Priority.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 13&14 Packet Multiple Access:The Aloha protocol.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lecture 19 Broadcast routing.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 15&16 Local Area Networks.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 17&18 Fast packet switching.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lecture 21 Optimal Routing.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 22&23 Flow and congestion control.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lecture 20 Routing in Data Networks.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Lectures 24&25 Higher Layer Protocols:TCP/IP and ATM.pdf
- 麻省理工学院:《数据通信》课程教学讲义(英文版)Data commu 目录.doc
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)目录.ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第五讲 移动通信的基本技术(三).ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第二讲 移动通信系统组成和特点.ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第六讲 GSM系统组成(一).ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第一讲 移动通信的发展和分类.ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第三讲 移动通信的基本技术(一).ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第四讲 移动通信的基本技术(二).ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第九讲 GSM的接续和移动性管理(一).ppt
- 四川邮电职业技术学院:《移动通信技术》课程教学资源(PPT课件)第十讲 GSM的接续和移动性管理(二).ppt