清华大学:A Heterogeneous Accelerator Platform for Multi-subject Voxel-based Brain Network Analysis(PPT讲稿)

Department of Electronic Engineering Tsinghua University A Heterogeneous Accelerator Platform for Multi-subject Voxel-based Brain Network Analysis Yu WANG, Mo XU, Ling REN, Xiaorui ZHANG, Di WU, Yong HE, Ningyi XU, Huazhong YANG Joint work by tsinghua Univ, beijing normal University, and microsoft NIES Nano-scale Integrated Circuit and System Lab
Department of Electronic Engineering, Tsinghua University Nano-scale Integrated Circuit and System Lab. A Heterogeneous Accelerator Platform for Multi-subject Voxel-based Brain Network Analysis Yu WANG, Mo XU, Ling REN, Xiaorui ZHANG, Di WU, Yong HE, Ningyi XU, Huazhong YANG Joint work by Tsinghua Univ., Beijing Normal University, and Microsoft 1

Outline Background and motivation a What is the brain network Platform and algorithm Why and how we design accelerators Results Conclusion and future work a What we can do next
Outline ➢ Background and Motivation ❑ What is the brain network ➢ Platform and Algorithm ❑ Why and how we design accelerators ➢ Results ➢ Conclusion and future work ❑ What we can do next 2

Understanding the brain One of the greatest scientific challenges of 21st century Human Genome Project(HGP 1990-2003) a NIH Human Connectome Project http://humanconnectome.org/ThenIHHumanConnectomeProjectwowmc Human Connectome Project Connectome Mupping structural and functional conection in the hunan brain Human Connectome Mapping structural and functional connectivity in the human brain 5 years, $30 million, 2 consortiums, 4+ universities /hospitals for the basic analysis method and acquiring data Washington University in Saint Louis- Univeraity ofMinneswta
Understanding the Brain ➢ One of the greatest scientific challenges of 21st century ❑ NIH Human Connectome Project 3 http://humanconnectome.org/ Human Connectome: Mapping structural and functional connectivity in the human brain 5 years, $30 million, 2 consortiums, 4+ universities/hospitals, for the basic analysis method and acquiring data Human Genome Project (HGP 1990-2003)

What are brain networks? What is a network? Nodes and connections are two basic elements of a network A network (graph) What are the nodes and connections of brain networks and how do we define them? How many types of brain network s are there according to scale, physiology, and anatomy
What are brain networks? ◼ What is a network? ➔ Nodes and connections are two basic elements of a network. ◼ What are the nodes and connections of brain networks and how do we define them? ◼ How many types of brain network s are there according to scale, physiology, and anatomy A network (graph)

Scales and levels of brain networks Basic structure of brain networks(node and connection can be defined at different scales Microscale: neurons and Mesoscale: connections Macroscale: anatomically their synaptic connections within and between distinct brain regions and (about 1010 neurons in the minicolumns(about 2x108 inter-regional pathways cortey ) inicolumn in the cortex about 100 regions in the Voxel based Brain network Analysis Basic elements can be derived from Medical Imaging echniques Scale Neurons Columns 10K-100K Sporns et al(2005)PLoS Comput Biol
Scales and levels of brain networks ◼ Basic structure of brain networks (node and connection) can be defined at different scales. Sporns et al (2005) PLoS Comput Biol Macroscale: anatomically distinct brain regions and inter-regional pathways (about 100 regions in the cortex). Columns Regions Mesoscale: connections within and between minicolumns (about 2×108 minicolumn in the cortex ). Neurons Microscale: neurons and their synaptic connections (about 1010 neurons in the cortex). Voxel based Brain network Analysis Basic elements can be derived from Medical Imaging Techniques Scale: 10K-100K

Types from physiology and anatomy Basic types of brain networks can be described in terms of physiology and anatomy a Functional brain networks: Functional connectivity: temporal correlation between spatially remote neurophysiological events(Friston, Hum Brain Mapp 2004) Effective connectivity: causal effects of one neural system over another(Friston, Hum Brain Mapp 2004) a Structural brain networks: Structural connectivity: physical or structural (synaptic)connections linking neuronal units(sporns et al., Trends Cogn Sci 2004) I Morphometric connectivity: statistical interdependencies of morphological features between different brain regions such as the cortical thickness, gray matter volumes, density, areas and complexity(He et al., Neuroscientist, 2009) 6
Types from physiology and anatomy ➢ Basic types of brain networks can be described in terms of physiology and anatomy. ❑ Functional brain networks: • Functional connectivity: temporal correlation between spatially remote neurophysiological events (Friston, Hum Brain Mapp 2004). • Effective connectivity: causal effects of one neural system over another (Friston, Hum Brain Mapp 2004). ❑ Structural brain networks: • Structural connectivity: physical or structural (synaptic) connections linking neuronal units (Sporns et al., Trends Cogn Sci 2004). • Morphometric connectivity: statistical interdependencies of morphological features between different brain regions such as the cortical thickness, gray matter volumes, density, areas and complexity (He et al., Neuroscientist, 2009). 6

Brain Network Analysis(BNA) Non-invasive technique > Imaging techniques Graph theory Medical Imaging o functional MRi diffusion tensor mri, structural mri Reveal the properties of the brain a Small world, Scale free [Heuvel 20081 口 Efficiency a Modular structure valencia 2009 Understand the mechanism of brain diseases o Alzheimer's disease [he 2008; Supekar 2008 Lo 2010 a Schizophrenia [Bassett 2008; Zalskey 2010; Liu 2008 a Depression [Zhang 2011]
Brain Network Analysis (BNA) ➢ Imaging techniques + Graph theory ❑ functional MRI, diffusion tensor MRI, structural MRI, … ➢ Reveal the properties of the brain ❑ Small world, Scale free [Heuvel 2008] ❑ Efficiency ❑ Modular structure [Valencia 2009] ❑ … ➢ Understand the mechanism of brain diseases ❑ Alzheimer’s disease [He 2008; Supekar 2008; Lo 2010] ❑ Schizophrenia [Bassett 2008; Zalskey 2010; Liu 2008] ❑ Depression [Zhang 2011] ❑ … 7 Non-invasive technique: Medical Imaging

Challenge 1: Voxel-based BNA Utilize the high resolution of imaging techniques a Compared with region-based BNA 口2mm*2mm*2mm( each pixel)国国圆图图区 图图图国 口10k~100 k voxels 0o0Y 100 Regions 100 100K Vo×els 100K
10 20 30 40 50 60 5 10 15 20 25 30 35 40 45 50 Challenge 1: Voxel-based BNA ➢ Utilize the high resolution of imaging techniques ❑ Compared with region-based BNA ❑ 2mm * 2mm * 2mm (each pixel) ❑ 10k ~ 100k voxels 8 Regions 100 Regions 100 Voxels Voxels 100K 100K

Challenge 2: Multi/Many Subjects Huge computation, 2 days/ subject o 0(n,o(n)complexity Big-0 Complexity 口 Large n a Many subjects Low Signal-to-Noise Ratio [Benjamini 2006 a Solution: Take account networks from many subjects o But, Network construction is time-consuming 9
Challenge 2: Multi/Many Subjects ➢ Huge computation, 2 days / subject ❑ 𝑂 𝑛 2 , 𝑂 𝑛 3 complexity ❑ Large n ❑ Many subjects ➢ Low Signal-to-Noise Ratio [Benjamini 2006] ❑ Solution: Take account networks from many subjects ❑ But, Network construction is time-consuming 9

What we need Computing platforms and techniques that should be 口 Efficient Huge computation a Scalable Increasing network size a Affordable(infrastructure and power) Can be used in hospitals 10
What we need ➢ Computing platforms and techniques that should be ❑ Efficient • Huge computation ❑ Scalable • Increasing network size ❑ Affordable (infrastructure and power) • Can be used in hospitals 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京理工大学:《数据挖掘与处理 Data Mining and Data Processing》课程教学资源(PPT课件讲稿)第一章 数据科学与数据挖掘(张正军).ppt
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 2 Protocol Architecture - TCP/IP model and OSI Model.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第十章 文件、外部排序与外部搜索.ppt
- 《网站开发》课程教学资源(PPT课件讲稿)网站开发各阶段的任务.ppt
- 《C++大学教程》课程教学资源(PPT课件讲稿)Chapter 17 文件处理 File Processing.ppt
- 清华大学出版社:普通高校本科计算机专业特色教材精选《智能技术》课程教学资源(PPT讲稿课件)第4章 模糊逻辑技术(曹承志).ppt
- 《微机原理及应用》课程教学资源(PPT课件讲稿)第4章 汇编语言程序设计.pptx
- 北京航空航天大学:《程序语言设计原理》课程教学资源(PPT课件讲稿)第三章 过程式程序设计语言.ppt
- 北京航空航天大学:《程序语言设计原理》课程教学资源(PPT课件讲稿)并发程序设计语言.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第6章 Data-Level Parallelism in Vector, SIMD, and GPU Architectures.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第十一章 复位、时钟和省电方式控制.ppt
- 计算机应用基础课程:《信息技术应用基础》教学资源(PPT课件讲稿)第一章 中文WIN98操作系统.ppt
- 中国科学技术大学:《计算机视觉》课程教学资源(PPT课件讲稿)第七章 基于运动视觉的场景复原.ppt
- 中国科学技术大学:《计算机组成原理》课程教学资源(PPT课件讲稿)第五章 虚拟存储器(主讲:李曦).ppt
- 《Photoshop基础教程与上机指导》课程教学资源(PPT讲稿)第8章 简单编辑图像.ppt
- 安徽理工大学:《Linux开发基础 Development Foundation on Linux OS》课程教学资源(PPT课件讲稿)GNU C/C++ programming、CGI programming in GNU C/C++ language(方贤进).ppt
- 《面向对象程序设计》课程教学资源(课件讲稿)C++语言的面向对象特征、Java语言的面向对象特征、Python语言的面向对象特征、R语言的面向对象特征.ppt
- 面向对象程序设计语言(PPT课件讲稿).ppt
- 四川大学:《Linux操作系统》课程教学资源(PPT课件讲稿)第3章 Shell及其编程(主计:潘薇).ppt
- 清华大家:字符串匹配算法(PPT讲稿)String Matching Algorithm(Overview & Analysis).ppt
- 白城师范学院:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第四章 数据库安全性.pptx
- 合肥工业大学:《数据库系统》课程教学资源(PPT课件讲稿)数据库编程 ACCESS、MYSQL、Oracle(张国富)第一章 绪论.ppt
- 《信息安全概论》课程教学资源(PPT课件讲稿)第九章 计算机软件的安全性.ppt
- 清华大学:Pass-Join(A Partition based Method for Similarity Joins).pptx
- 对外经济贸易大学:《电子商务概论》期末考试试卷(部分含答案).pptx
- 沈阳理工大学:《大学计算机基础》课程教学资源(PPT课件讲稿)第3章 办公软件 3.2 电子表格软件Excel 2010.ppt
- 深圳大学:Learning 3D mesh segmentation and labeling(PPT讲稿).ppt
- 《电脑组装与维护实例教程》教学资源(PPT课件讲稿)第4章 输入输出设备介绍及选购.ppt
- 北京科技大学:《物联网工程》课程教学资源(PPT课件讲稿)课程介绍.ppt
- 中国科学技术大学:《数据结构及其算法》课程PPT教学课件(Data Structure and Algorithm)第4章 栈和队列(主讲:刘东).pptx
- 清华大学:智能弹性重叠网关键技术研究(PPT讲稿,指导老师:李衍达).ppt
- 《Access 2013数据库技术及应用》课程教学资源(PPT课件讲稿)第12章 VBA模块设计.ppt
- 《计算机原理及应用》课程教学资源(PPT课件讲稿)第9章 单片机I/O接口扩展技术.pptx
- 《计算机图形学》课程教学资源(PPT课件讲稿)Chapter 5 Attributes of Graphics Primitives.pptx
- 《计算机操作系统》课程教学资源(PPT讲稿)Windows 2003的安全.ppt
- 厦门大学计算机科学系:《大数据技术原理与应用》课程教学资源(PPT课件)第12章 数据可视化.ppt
- 西安电子科技大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第四章 汇编语言程序设计(主讲:王晓甜).pptx
- 计算机维护与维修(PPT课件讲稿)第十二章 笔记本电脑维护维修.ppt
- 《C语言程序设计》课程电子教案(PPT教学课件)第三章 分支结构.ppt
- 电子科技大学:《面向对象程序设计语言C++》课程教学资源(PPT课件讲稿)第五章 构造数据类型.ppt