南京大学:《计算理论之美》课程教学资源(课件讲稿)Some efficient algorithms for the k-vertex cover problem

Some efficient algorithms for the k-vertex cover problem Yijia Chen Shanghai Jiao Tong University July 8,2021@Nanjing
Some efficient algorithms for the k-vertex cover problem Yijia Chen Shanghai Jiao Tong University July 8, 2021 @ Nanjing

The goal of this talk 1.Show you an interesting(I hope)problem. 2.Show some simple yet non-trivial algorithms. 3.Show a nontrivial application of linear programming. 4.Present a parallel algorithm using logic and number theory
The goal of this talk 1. Show you an interesting (I hope) problem. 2. Show some simple yet non-trivial algorithms. 3. Show a nontrivial application of linear programming. 4. Present a parallel algorithm using logic and number theory

The CCTV problem CAN WE INSTALL AT MOST 10000 CCTV (CLOSED-CIRCUIT TELEVI- SION)CAMERAS SO THAT EVERY STREET IN NANJING IS COVERED?
The CCTV problem Can we install at most 10000 CCTV (closed-circuit television) cameras so that every street in Nanjing is covered?

Modelling the CCTV problem
Modelling the CCTV problem

Modelling the CCTV problem
Modelling the CCTV problem

Vertex cover Definition Let G=(V,E)be a graph.Then a vertex cover is a vertex subset S C V such that for every uv∈E ues or ves
Vertex cover Definition Let G = (V, E) be a graph. Then a vertex cover is a vertex subset S ⊆ V such that for every uv ∈ E u ∈ S or v ∈ S

The main question of this talk FOR EACH FIXED K,WHAT IS THE BEST ALGORITHM TO FIND A VERTEX COVER OF SIZE AT MOST K OR REPORT THERE IS NONE?
The main question of this talk For each fixed k, what is the best algorithm to find a vertex cover of size at most k or report there is none?

The most naive algorithm BRUTEFoRCE(G,k) 1.For each subset ScV with ISlsk 2.if s is a vertex cover of G,then output S and return 3.output NO. The number of its running steps is roughly IG+1
The most naive algorithm BruteForce(G, k) 1. For each subset S ⊆ V with |S| 6 k 2. if S is a vertex cover of G, then output S and return 3. output NO. The number of its running steps is roughly |G| k+1

Another naive algorithm BouNDEDSEARCHTREE(G,k) Rodney G.Downey Michael R.Fellows
Another naive algorithm BoundedSearchTree(G, k) Rodney G. Downey Michael R. Fellows

Another naive algorithm BouNDEDSEARCHTREE(G,k) 1.If k<0 then return NO 2.If G has no edge then return S=0 3.else 4. choose an arbitrary edge uv in G 5 remove,u from G and let Gu be the resulting graph 6. call BOUNDEDSEARCHTREE(Gu,k-1) 7 if it returns a vertex cover Su then return SUfu) 8. remove v from G and let G.be the resulting graph 9 call BOUNDEDSEARCHTREE(Gy,k-1) 10. if it returns a vertex cover S then return SU(v) 11. return NO
Another naive algorithm BoundedSearchTree(G, k) 1. If k < 0 then return NO 2. If G has no edge then return S = ∅ 3. else 4. choose an arbitrary edge uv in G 5. remove u from G and let Gu be the resulting graph 6. call BoundedSearchTree(Gu, k − 1) 7. if it returns a vertex cover Su then return Su ∪ {u} 8. remove v from G and let Gv be the resulting graph 9. call BoundedSearchTree(Gv, k − 1) 10. if it returns a vertex cover Sv then return Sv ∪ {v} 11. return NO
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Principles of Quantum Computation.pptx
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Distributed Consensus Reaching Agreement in Faulty Environment.pdf
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Color Coding.pdf
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Cluster expansion lemma.pdf
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Operating system 2.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Operating system 1.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Fundamentals of Network 2.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Fundamentals of Network 1.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Basics of Multimedia 2.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Mail Merge.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Basics of Multimedia 1.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Fundamentals of Computers Introduction(负责人:臧笛).ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Microsoft Excel.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Database.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Basics of Computer System.ppt
- 同济大学:《大学计算机基础》课程教学资源(教案讲义)Data Representation.ppt
- 同济大学:《大学计算机基础》课程教学资源(试卷习题)试卷样本及答案.doc
- The Not So Short Introduction to LaTeX2ε(Or LATEX 2ε in 139 minutes).pdf
- 上饶师范学院:《数据库系统原理》课程教学资源(PPT课件)数据库系统概论 An Introducation to Database System(完整版).ppt
- 上饶师范学院:《数据库系统原理》课程教学资源(电子教案)数据库系统原理电子教案(共九章).doc
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Lovász Local Lemma(LLL).pdf
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Perfect Sampling for(Atomic)Lovász Local Lemma.pptx
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)An introduction to quantum error-correction.pdf
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Lovász local lemma(Shearer).pdf
- 南京大学:《计算理论之美》课程教学资源(课件讲稿)Social Choice Theory.pdf
- 《数据库设计与应用》课程教学资源(PPT课件讲稿)T-SQL语言.pdf
- 《Python程序开发》教学资源(讲义)第二章 数据类型与结构.pdf
- 《C语言程序设计》课程教学资源(教案讲义)第8章 函数.pdf
- 《单片机应用技术》课程教学资源(教案)单片机应用技术教案.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(教材,英文版)Part II Problem Solving 5 Constraint Satisfaction Problems.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(教材,英文版)Part III Knowledge and Reasoning 7 Logical Agents.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(教材,英文版)Part IV Planning 11 Planning.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(教材,英文版)Part VI Learning 20 Statistical Learning Methods.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter01-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter01.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter02-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter02.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter03-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter03.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter04a-6pp.pdf