中国科学技术大学:Non-Uniform Recursive Doo-Sabin Surfaces

Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang'Guoping Wang University of Science and Technology of China Peking University,China SIAM Conference on Geometric and Physical Modeling ZHuang G Warg Nen-U ho
Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang1 Guoping Wang2 1University of Science and Technology of China 2Peking University, China SIAM Conference on Geometric and Physical Modeling Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Doo-Sabin Surfaces Generalization of uniform biquadratic B-spline surfaces to meshes of arbitrary topology [Doo and Sabin 1978]. Limit point rule:For an n-sided face, its centroid is the limit position of its associated extraordinary point. The extraordinary points are at the "centers"of n-sided faces. Convergence:The Doo-Sabin refinement is convergent for extraordinary points with arbitrary valence. Z Huang.G Wang Non-Uniform Recursive Doo-Sabin Surtaces (NURDSes)
Doo-Sabin Surfaces Generalization of uniform biquadratic B-spline surfaces to meshes of arbitrary topology [Doo and Sabin 1978]. Limit point rule: For an n-sided face, its centroid is the limit position of its associated extraordinary point. The extraordinary points are at the "centers" of n-sided faces. Convergence: The Doo-Sabin refinement is convergent for extraordinary points with arbitrary valence. Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Quadratic NURSSes Generalization of non-uniform biquadratic B-spline surfaces to meshes of arbitrary topology [Sederberg et al.1998]. No closed form limit point rules. Converge for n-sided faces with n<12,but may diverge if n 12 [Qin et al.1998]. Z Huang.G Wang Non-Uniform Recursive Doo-Sabin Surtaces (NURDSes)
Quadratic NURSSes Generalization of non-uniform biquadratic B-spline surfaces to meshes of arbitrary topology [Sederberg et al. 1998]. No closed form limit point rules. Converge for n-sided faces with n ≤ 12, but may diverge if n > 12 [Qin et al. 1998]. Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Doo-Sabin Subdivision n-1 p=>wP,i=0,n-1. j=0 Doo-Sabin version [Doo and Sabin 1978],extended to quadratic NURSS: i=j 3+2cos(2m-1/D,i≠j 4n Catmull-Clark variant [Catmull and Clark 1978]: 是+动,i-引=0 +,i-引=1 i-引>1 Z Huang.G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
Doo-Sabin Subdivision Pi = Xn−1 j=0 wijPj , i = 0, . . . , n − 1. Doo-Sabin version [Doo and Sabin 1978], extended to quadratic NURSS: wij = ( n+5 4n , i = j 3+2 cos(2π(i−j)/n) 4n , i 6= j Catmull-Clark variant [Catmull and Clark 1978]: wij = 1 2 + 1 4n , |i − j| = 0 1 8 + 1 4n , |i − j| = 1 1 4n , |i − j| > 1 Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Catmull-Clark Variant of Doo-Sabin Subdivision Repeated averaging [Stam 2001,Zorin and Schroder 2001]: ■Linear subdivision: E,=B,+P+小 ■Dual averaging: E=R+E-1+B+) =(2+4 P++P+1+P)t∑ Z Huang.G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
Catmull-Clark Variant of Doo-Sabin Subdivision Repeated averaging [Stam 2001, Zorin and Schröder 2001]: Linear subdivision: Ei = 1 2 (Pi + Pi+1), F = 1 n Xn−1 j=0 Pj Dual averaging: Pi = 1 4 (Pi + Ei−1 + Ei + F) = (1 2 + 1 4n )Pi + (1 8 + 1 4n )(Pi+1 + Pi−1) + 1 4n X |i−j|>1 Pj . Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-uniform Quadratic B-spline Subdivision Non-uniform Quadratic B-spline Curves P knot intervals:d-1 ddi+i knots::-4.8+14+2 For a quadratic B-spline curve,a knot interval di is assigned to each control point P;. A knot interval is the difference between two adjacent knots in the knot vector,i.e.,the parameter length of a B-spline curve segment. ZHuang.G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
Non-uniform Quadratic B-spline Subdivision Non-uniform Quadratic B-spline Curves For a quadratic B-spline curve, a knot interval di is assigned to each control point Pi . A knot interval is the difference between two adjacent knots in the knot vector, i.e., the parameter length of a B-spline curve segment. Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-uniform Quadratic B-spline Subdivision Non-uniform Quadratic B-spline Subdivision Refinement rules E Repeated averaging: Non-uniform linear subdivision: E=ditiPi+diPit di+di+1 ■Averaging: Q=e,+E)=a+24P,+dP+ 2(d+d+1) Q2+1=2+1+E)= d+1Pi+(2d+d+1)Pi+1 2(di dith).,.,至pac Z Huang.G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
Non-uniform Quadratic B-spline Subdivision Non-uniform Quadratic B-spline Subdivision Refinement rules Repeated averaging: Non-uniform linear subdivision: Ei = di+1Pi + diPi+1 di + di+1 Averaging: Q2i = 1 2 (Pi + Ei) == (di + 2di+1)Pi + diPi+1 2(di + di+1) Q2i+1 = 1 2 (Pi+1 + Ei) = di+1Pi + (2di + di+1)Pi+1 2(di + di+1) . Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-uniform Quadratic B-spline Subdivision Non-uniform Biquadratic B-spline Surfaces +2 P+1 P+1+1 +1 -1 t-1 P-1J-1 d-1 d +1 1 +1 A horizonal knot interval di and a vertical knot interval e;is assigned to each control point Pi as each control point corresponds to a biquadratic surface patch. ZHuang.G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
Non-uniform Quadratic B-spline Subdivision Non-uniform Biquadratic B-spline Surfaces A horizonal knot interval di and a vertical knot interval ej is assigned to each control point Pi,j , as each control point corresponds to a biquadratic surface patch. Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-uniform Quadratic B-spline Subdivision Non-uniform Biquadratic B-spline Subdivision Refinement rules Repeated averaging: Non-uniform linear subdivision: E=+,=9#B+sB出 di+diti ej+ejtl F=i(ditiPij+dPitij)+e(diPiti+dPij) (d+d+i)(e+ei+1) Dual averaging:Q2i.2j=(Pij +E1+E2+F) 。生 Z Huang.G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
Non-uniform Quadratic B-spline Subdivision Non-uniform Biquadratic B-spline Subdivision Refinement rules Repeated averaging: Non-uniform linear subdivision: E1 = di+1Pi,j + diPi+1,j di + di+1 , E2 = ej+1Pi,j + ejPi,j+1 ej + ej+1 F = ej+1(di+1Pi,j + diPi+1,j) + ej(di+1Pi,j+1 + diPi+1,j+1) (di + di+1)(ej + ej+1) Dual averaging: Q2i,2j = 1 4 (Pi,j + E1 + E2 + F) Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

NURDSes Non-uniform Doo-Sabin Surfaces Each vertex is assigned a knot interval(possibly different)for each edge incident to it. After subdivision,new knot intervals can be specified as follows: 配+1=1=论+1 -1=站+1=- Z Huang,G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
NURDSes Non-uniform Doo-Sabin Surfaces Each vertex is assigned a knot interval (possibly different) for each edge incident to it. After subdivision, new knot intervals d¯k ij can be specified as follows: d¯0 i,i+1 = d¯−1 i,i−1 = d 0 i,i+1 d¯0 i,i−1 = d¯1 i,i+1 = d 0 i,i−1 . Z Huang, G Wang Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国科学技术大学:Non-Uniform Recursive Doo-Sabin Surfaces.pdf
- 全国信息安全标准化技术委员会:大数据安全标准化白皮书(2018版).pdf
- 中国信通院:勒索病毒安全防护手册(2021年9月).pdf
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第9章 安全管理.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第8章 数据的备份和恢复.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第7章 存储过程和触发器.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第6章 T-SQL程序设计.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第5章 关系、索引和视图.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第4章 约束、默认和规则.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第3章 表和表数据的操作.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第1章 SQL Sever2000概述(教师:孟艳敏).ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第10章 服务器性能和活动监视.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第2章 数据库文件管理.ppt
- 佛山开放大学:《SQL Server 2000 程序设计》课程教学资源(PPT课件)第12章 ODBC数据库应用程序开发.ppt
- 中国科学技术大学:《嵌入式系统设计方法》课程教学资源(课件讲稿,第二版)RTE规范与建模方法之 Domain Specific Modeling Languages(MARTE、AADL、Autosar).pdf
- 中国科学技术大学:《嵌入式系统设计方法》课程教学资源(课件讲稿,第二版)实时嵌入式软件设计(控制系统,DARTS,EA,语言).pdf
- 中国科学技术大学:《嵌入式系统设计方法》课程教学资源(课件讲稿,第二版)设计验证与需求确认(嵌入式系统的属性与验证).pdf
- 中国科学技术大学:《嵌入式系统设计方法》课程教学资源(课件讲稿,第二版)嵌入式系统形式化规范与建模(FSM,KPN,SDF).pdf
- 中国科学技术大学:《嵌入式系统设计方法》课程教学资源(课件讲稿,第二版)嵌入式操作系统(uC、OSII).pdf
- 中国科学技术大学:《嵌入式系统设计方法》课程教学资源(课件讲稿,第二版)实时调度(多处理器、调度异常、WCET).pdf
- 中国科学技术大学:Distance Between a Catmull-Clark Subdivision Surface and Its Limit Mesh.ppt
- 中国科学技术大学:Distance Between a Catmull-Clark Subdivision Surface and Its Limit Mesh.pdf
- 中国科学技术大学:Extended Doo-Sabin Surfaces.pdf
- 中国科学技术大学:Full Camera Calibration from a Single View of Planar Scene.pdf
- 中国科学技术大学:A bound on the approximation of a Catmull-Clark subdivision surface by its limit mesh.pdf
- 中国科学技术大学:Bounding the Distance between a Loop Subdivision Surface and Its Limit Mesh.pdf
- 中国科学技术大学:Bounding the Distance between a Loop Subdivision Surface and Its Limit Mesh.pdf
- 中国科学技术大学:An Efficient Approach to Real-Time Sky Simulation.pdf
- 中国科学技术大学:Estimating Error Bounds and Subdivision Depths for Loop Subdivision Surfaces.pdf
- 中国科学技术大学:一类多参数的曲线细分格式.pdf
- 中国科学技术大学:JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA.pdf
- 中国科学技术大学:NEW PROOF OF DIMENSION FORMULA OF SPLINE SPACES OVER T-MESHES VIA SMOOTHING COFACTORS.pdf
- 中国科学技术大学:单变量均匀静态细分格式的连续性分析和构造 Continuity Analysis and Construction of Uniform Stationary Univariate Subdivision Schemes.pdf
- 《C++程序设计》课程教学资源(参考资料)C++ Programming ISO/IEC 14882 2003(规范文档)INTERNATIONAL STANDARD(Second edition).pdf
- 《C++程序设计》课程教学资源(参考资料)C++ Programming ISO/IEC 14882 C++11(规范)Information technology — Programming languages — C++.pdf
- 中国科学技术大学:《C++语言程序设计》课程教学资源(复习提纲,主讲:黄章进).pdf
- 中国科学技术大学:《C++语言程序设计》课程教学资源(讲义)第一章 绪论(主讲:黄章进).pdf
- 中国科学技术大学:《C++语言程序设计》课程教学资源(讲义)C++语言漫谈.pdf
- 中国科学技术大学:《C++语言程序设计》课程教学资源(讲义)第二章 C++简单程序设计.pdf
- 中国科学技术大学:《C++语言程序设计》课程教学资源(讲义)第三章 函数.pdf