上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter9 Phase Diagram(2013,1/2)

上游充通大¥ SHANGHAI JIAO TONG UNIVERSITY Chapter 9.Phase Diagram Contents today: .Freezing point depression .The lever rule .Simple Eutectic diagram .Cooling curves AO TONG
Chapter 9. Phase Diagram Contents today: •Freezing point depression •The lever rule •Simple Eutectic diagram •Cooling curves

上游充通大¥ SHANGHAI JIAO TONG UNIVERSITY 7.3(a)At 900 K,is Fe;C a stable compound relative to pure Fe and graphite? (b)At 900 K,what is the thermodynamic activity of carbon in equilibrium with Fe and Fe;C? Carbon as graphite is taken as the standard state. (c)In the Fe-C phase diagram,the carbon content of a-iron in equilibrium with Fe3C is 0.0113wt%. What is the solubility of graphite in a-iron at 900 K? DATA 1700 L+6 At 900 K: 1538 /1495 液相 3Fe+C(graphite)=Fe3C △G0=+3463J 1394 6+Y 1300F L+Y C4.26 1227 ANSWER: E2.081154 1100 E2.11 1148 C4.30 (a)AG=3643 J>0,So Fe;C is not a stable compound (b)AG-RT In ec=-RTInac (ape.c=1,aFe=1) Y+Fe3C(实线) 莱氏体 c喔ec s'0.68 Y+石墨(实线) 3643=-8.314*900*1n0c OTON p 738 700 s077 722 cc=0.614 珠光体” a+Fe3C(实线) (c)Since addition of more carbon into a-iron 500 a+石墨(实线) Fe3C will results in evolution of more Fe3C,the carbon 300 content of 0.0113wt%has reached saturation. 0 1.0 2.0 3.0 4.0 5.0 6.0 6.69 wC(%) The solubility of carbon in a-iron is 0.0113%. Y/A:奥氏体区;QF:铁素体区:L:液相区: Fe3C/Cm:渗碳体区;8:固溶体区

上游充通大¥ SHANGHAI JIAO TONG UNIVERSITY Review:Phase rule Therefore,for a system with N species and P phase: The components C=N-R (R:the number of relationships among the species) p/kPa B AR=P(C-1)+2 水 (液相) REL=C(P-1) 22090 F=VAR-REL-C-P+2 冰 (固相) 蒸发线 For one component system:C=1101.3s 汽 (气相) Single phase:P=1,F=2 0.611 升华线 0 00 Two-phase region:P=2,F=1 Triple point:P=3,F=0 273.16373.15 647.29TK
Therefore, for a system with N species and P phase: The components C = N – R (R: the number of relationships among the species) VAR = P(C-1) +2 REL = C(P-1) F = VAR-REL=C-P+2 For one component system: C = 1 Single phase: P =1, F = 2 Two-phase region: P = 2, F = 1 Triple point: P = 3, F = 0 Review: Phase rule

上游充通大学 SHANGHAI JIAO TONG UNIVERSITY Binary System In condensed systems,modest variations in pressure In general system containing do not appreciably alter phase relationships gases,pressure is important Degrees of freedom available in the system(F): F=C-P+1 F=C-P+2 F:the number of system variables that we may freely vary,or arbitrarily fix C:components P:phase C=2 P=1,F=2 单相区 P=2,F=1 平衡线包围的两相区 P=3,F=0 三相平衡线
In condensed systems, modest variations in pressure do not appreciably alter phase relationships In general system containing gases, pressure is important

上游充通大 SHANGHAI JIAO TONG UNIVERSITY 9.1 Freezing point depression(1) The Gibbs free energy change from solid to liquid G partial molar AG=RTn∠=RTIn al,pure G molar f s,pure △G=RT In a,pre Liquid 个 if as.pure=1 Liquid and solid Tm(melting At Tm,solid and liquid are at equilibrium, are at equilibrium temperature) Solid AG=0,therefore,apure=1 at temperatures below Tm IAO TONG UNI AGmelting=AH nelong-TASmcling =L-TAS Phase diagram of a single- melting component system L:latent heat of fusion熔解潜热 Assume AH and AS are independent of temperature AtTm,△melring=0=>L=Tm△Smelting
9.1 Freezing point depression (1) if 1 ln ln ln , , , , s pure l pure s pure l pure s l a G RT a f a RT f f G RT Tm(melting temperature) T Liquid Solid Phase diagram of a singlecomponent system Liquid and solid are at equilibrium The Gibbs free energy change from solid to liquid : At Tm, solid and liquid are at equilibrium, ΔG = 0, therefore, Gmelting Hmelting TS melting L TS melting al, pure 1 L: latent heat of fusion 熔解潜热 at temperatures below Tm Assume ΔH and ΔS are independent of temperature At Tm, ΔGmelting = 0 => L = Tm ΔSmelting G G partial molar molar

上浒充通大粤 SHANGHAI JIAO TONG UNIVERSITY 9.1 Freezing point depression(2) L=Tm ASmelting →ASmelting=L/Tm AG-) L(T-T) Tm △G RT In as.pure RT In- ai.pure L(T-T) T1 The subcooled liquid is not stable,super active.The activity is larger than 1,the normal liquid
9.1 Freezing point depression (2) L = Tm ΔSmelting ΔSmelting = L/Tm m m . , . , melting m m melting ( - ) ln ln ( - ) (1 T L T T a a RT a a G RT T L T T T T G L s pure l pure s pure l pure m ) T1 The subcooled liquid is not stable, super active. The activity is larger than 1, the normal liquid

上游充通大学 SHANGHAI JIAO TONG UNIVERSITY Consider the case where B is added into A to form a solution. Liquid:ideal solution Solid:immiscible T→x Equilibrium:Pure solid A and solution AB at T' Solid A Solution AB A XB→ B A:pure solid==solution ↓ Fig.9.2 Plot of the activity of Aqi AO TONG at T<TmA versus composition. A:pure solid-=pure liquid =solution 1 Melting dissolving △melting L(T-T) △G=RTln Asoluton Tn .pure
>1 Consider the case where B is added into A to form a solution. Liquid: ideal solution Solid: immiscible Equilibrium: Pure solid A and solution AB at T’ l pure l solution a a G RT . , ln Solid A Solution AB A: pure solidsolution A: pure solidpure liquid solution Melting dissolving m m melting ( - ) T L T T G

上游充通大 SHANGHAI JIAO TONG UNIVERSITY 4G= L(T-T)RTI o T A1.pure pure water ice G > Tm solution G Lower temperature ice T pure water solution △melting L(T-T) NAIIAOTONG △G=RTln a1solution al.pure At T',If pure solid is in equilibrium with solution: AG-L(-T)+RT'In =0 A1.pure
T’ G ice ice pure water solution l pure l solution a a G RT . , ln m m melting ( - ) T L T T G G l pure l solution a a RT T L T T G . , m m ln ( - ) ln 0 ( - ) . , m m l pure l solution a a RT T L T T G At T’, If pure solid is in equilibrium with solution: Tm pure water solution T’ Lower temperature

上游充通大粤 SHANGHAI JIAO TONG UNIVERSITY 9.1 Freezing point depression(4) The liquid solution is in equilibrium with the pure solid, T △G L(T-T) RTI 9ohnon T a1.pure 人 Liquid L(T -T) ideal solution L+S Tm )=-RTX41.ohuton If T is close to the Tm NIVE L(T-T) In x 1.solution RT Melting point depression XB1 X L(T -T) △T=Tm-T XB In(1-2=-z small z RT
9.1 Freezing point depression (4) Tm T Liquid L+S T1 xB1 x

上游充通大粤 SHANGHAI JIAO TONG UNIVERSITY 9.1 Freezing point depression (5) L(Tn-T) RT Example: 1mol%of lead added to silver caused lowering of melting point of silver. Tm=1234K,L=11300J/mol T R(T)2xg 人S 8,314*12342*0.01=11.2K Liquid 47s L 11300 L+S Phase rule: AF=C-P+1=2-2+1=1 Therefore,once the temperature is specified,the composition is also fixed. XB1 X What about the quantifies of the phases?
9.1 Freezing point depression (5) Tm T Liquid L+S T1 xB1 x Example: 1mol% of lead added to silver caused lowering of melting point of silver. Tm = 1234 K, L = 11300 J/mol K L R T x T B 11.2 11300 ( ) 8.314*1234 *0.01 2 2 m Phase rule: F = C – P + 1 = 2 – 2 + 1 = 1 Therefore, once the temperature is specified, the composition is also fixed. What about the quantifies of the phases?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter8 Phase rule.pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter7 Solution.pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter7 Solution.pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter10 Statistical Thermodynamics.pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter 11 Surface and Interface.ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(实验)粉体材料比表面积的测定.docx
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter 11 Surface and Interface(2016).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter 11 Surface and Interface(2016).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter9 Phase Diagram(3/3).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter9 Phase Diagram(3/3).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter9 Phase Diagram(1/3).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter8 Phase Rule.ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter7 Solution(2/2).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(PPT课件讲稿)Chapter7 Solution(1/2).ppt
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)lecture 7 equilibrium.pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)lecture 6 property relation(2/2).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)lecture 5 property relation(1/2).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)lecture 4 第二定律 Second law(2/2).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)lecture 3 第二定律 Second law(1/2).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)lecture 2 第一定律 First law(2/2).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter9 Phase Diagram(2015,1/3).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter9 Phase Diagram(2015,2/3).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter9 Phase Diagram(2015,3/3).pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Chapter11 Surface and Interface.pdf
- 上海交通大学:《材料热力学 Thermodynamics of materials》课程教学资源(课件讲稿)Introduction(主讲:邹建新).pdf
- 上海交通大学:《材料工程导论》课程教学资源(2017课件)生物医用材料.pdf
- 上海交通大学:《材料工程导论》课程教学资源(2017课件)材料工程研究方法.pdf
- 上海交通大学:《材料工程导论》课程教学资源(2017课件)材料工程中的创新——TRIZ创新研究方法(高海燕).pdf
- 上海交通大学:《材料工程导论》课程教学资源(2017课件)概述(主讲:孙宝德).pdf
- 上海交通大学:《材料工程导论》课程教学资源(2017课件)身边的材料工程.pdf
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)青铜雕塑品是怎么制成的(How’s Bronze Sculptures made).ppt
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)未来小汽车材料畅想.ppt
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)乐扣水杯生产工艺.ppt
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)笔记本外壳.pptx
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)燃料电池的催化电极材料(Pt).ppt
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)汽车发展与材料进步.pptx
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)生活中的材料科学——易拉罐.pptx
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)眼镜之镜架篇 Glasses.pptx
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)材料与汽车 Material & utomobile.pptx
- 上海交通大学:《材料工程导论》课程教学资源(作业展示)水污染处理中的MSE.pptx