《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 3 Measures of Information

Principles of Information Science Chapter 3 Measures of information
Principles of Information Science Chapter 3 Measures of Information

3-1 Measures of Random Syntactic Information Shannon Theory of Information Key point 1. nformation is something that can be used to remove uncertainty 2. The amount of information can then be measured by the amount of uncertainty it removed 3. In the cases of communications, only waveform is concerned while meaning and value are ignored 4. Uncertainty and thus information are statistic in nature and statistical mathematics is enough
3-1 Measures of Random Syntactic Information Shannon Theory of Information 2. The amount of information can then be measured by the amount of uncertainty it removed. 1. Information is something that can be used to remove uncertainty. Key point: 3. In the cases of communications, only waveform is concerned while meaning and value are ignored. 4. Uncertainty and thus information are statistic in nature and statistical mathematics is enough

Shannon Theorem of random Entropy The measure of uncertainty, will take the form of N Hs(p )=-k n=1 R log R if the conditions below are satisfied should be a continuous function of p, for all n; n (2)Hs should be a monotonically increasing function ofn when p=1/N for all n 3)Hs should observe the rule of stepped weighting summation
Shannon Theorem of Random Entropy The measure of uncertainty, will take the form of H (p , …, p ) = - k p log p n n=1 N n S 1 N (1) H should be a continuous function of p , for all n; S n if the conditions below are satisfied: (2) H should be a monotonically increasing function of N when p = 1/N for all n; S n (3) H should observe the rule of stepped weighting summation. S

The rule of stepped weighting summation: 1/2 1p.=1/2 1/2 13 2p=1/3 23 2 1/6 1/6 13 3 H(12,13,1/6)=H(12,12)+12H(2/3,1/3)
The rule of stepped weighting summation: 1/2 1/3 1/6 x x x 1 2 3 1/2 1/2 2/3 1/3 x x x 1 2 3 p = 1/2 p = 1/3 p = 1/6 1 2 3 H (1/2, 1/3, 1/6) = H (1/2, 1/2) + 1/2 H (2/3, 1/3) S S S

Proof: (a) In the case of equal probabilities Let Hy(N,…,1N)=A(N) By use condition 3), it is then easy to have A(MN)=Hs(1MN,…,1/N) Hsd1M,…,1M)+;(M)(N,…,1N) Then A(+A(N A(3=2A(N, A(S)=QA(S), A(t=BA(t For any given B, it is always possible to find a proper a such that Q+1
Proof: (a) In the case of equal probabilities S S H (1/N, …, 1/N) = A(N) By use condition (3), it is then easy to have A(MN) = H (1/MN, …, 1/MN) S S M i=1 = A(M) + A(N) Then A(N ) = 2 A(N), A(S ) = A(S), A(t ) = A(t) 2 a a b b Let = H (1/M, …, 1/M) + (1/M) H (1/N, …, 1/N) For any given b, it is always possible to find a proper a such that S t < S a b a+1 (*)

or equivalentI 0g <+ βlogsββ On the other hand, from()we have A(S) A()<A(S+I) aA(s)βA(t)<(+)A(S) or aA(t)<01 βAS)ββ Thus A(S logS/Y A(t) log t When b is large enough, we have A(t=k log t
a b log t log S < b a + 1 b or equivalently On the other hand, from (*) we have A(S ) A(t ) < A(S ) a a b a+1 or A(s) bA(t) < (a+1)A(S) (**) b a A(t) A(S) < a b + 1 b (***) Thus A(t) A(S) - log t log S < 1 b When b is large enough, we have A(t) = k log t

(b)In the case of unequal and rational probabilities Let where n, - positive integer for all i then the unequal distribution entropy Hs(P1,.,PN) becomes the case of equal probabilities: n H(
(b) In the case of unequal and rational probabilities Let ni ni i=1 N i then the unequal distribution entropy H (p , …, p ) becomes the case of equal probabilities: i i = n , n1 H ( … , …, ... , … , ... ) n n i N p = where n -- positive integer for all i. S 1 N

On one hand we have H5(…)=A(1/)=klog(1/ On the other hand )=H1(p,…wp)+;H/n,…1) Hsp,…,只)+1pan) HPp1,…,R)+k=P;g Hence Hsq,…=kuog(1 i-l i p log n I -k, p log n log p (c)If p are irrational, the equation also valid, see(1)
On one hand we have H ( … ) = A(1/ ) = k log (1/ ) On the other hand H ( … ) = H (p , …, p ) + p H (1/n , …, 1/n ) = H (p , …, p ) + A(n ) = H (p , …, p ) + k log n 1 N i i i N i=1 S S S S S 1 N i=1 N p i i=1 N p i S 1 N Hence H (p , …, p ) = k[log(1/ ) - p log n ] = - k p log n = - k p log p i i i=1 N i i i=1 N i=1 N i i i i 1 N (c) If p are irrational, the equation also valid, see (1). S

In the case of ideal observation p1…,R)=B(1,…p-(1,0,…,0) (0log0=0) k pi log pi Let n=2, p=p, the base of logarithm takes the value 2 and H(1n2, 1/2)=I bit, then kl. Therefore we have I(p,,…,R)=H(p, log p(bits
I(p , …, p ) = H (p , …, p ) - H (1, 0, …, 0) = H (p , …, p ) = - k S S S 1 N 1 N 1 N i=1 N p log p i i Let N=2, p = p , the base of logarithm takes the value 2 and H (1/2, 1/2) = 1 bit, then k=1. Therefore we have In the case of ideal observation I(p , …, p ) = H (p , …, p ) = - p log p i i i=1 N 1 N S 1 N (bits) (0 log 0 = 0)

Conclusion For a system with n possible states and their associated probabilities p,,..., p, the average a priori uncertainty about the state of the system is Hs(p,,R The average amount of information a bout the system obtained after observation in ideal case is numerically equal to the uncertainty it removed
Conclusion For a system with N possible states and their associated probabilities p , …, p , the average a priori uncertainty about the state of the system is H (p , …, p ). 1 N S 1 N The average amount of information about the system obtained after observation in ideal case is numerically equal to the uncertainty it removed
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 2 The Concept & Description.ppt
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 1 An Outline of Information Science.ppt
- Biometric Security Lecture 8.pdf
- 高等院校安全工程专业教材:《安全学原理》课程教学资源(书籍)教材PDF电子书(共六章,林柏泉).pdf
- 同济大学:大楼防范系统(PPT讲稿,主讲:王长庆).ppt
- 职业安全健康管理体系培训课程(PPT讲稿)重大生产安全事故应急救援预案.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)有毒和感染性物质.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)易燃液体.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)海上危险品运输的发展趋势.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)危险货物的集装箱运输.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)腐蚀品.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第一章 危险货物运输法规.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第四章 危险货物的托运.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第十章 水运散装液化气.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第三章 危险货物运输包装型式.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第六章 危险货物事故的应急.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第九章 水运散装液体化学品.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第二章 危险货物的分类和标志.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(PPT课件)第八章 水运散装油类物质.ppt
- 大连海事大学:《危险品运输安全与管理》课程教学资源(试卷习题)危险品运输安全管理试卷7.doc
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 5 Principles of Information Transferring:Communication Theory.ppt
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 6 Information Processing & Cognition:Knowledge Theory.ppt
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 7 Information Regeneration - Decision Making Theory.ppt
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 8 Information Execution Control Theory.ppt
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 9 Information Organization - System Optimization Theory.ppt
- 《情报科学原理 Principles of Information Science(PIS)》课程PPT教学课件:Chapter 10 Methodology, Applications & Progress.ppt
- 地质灾害避险搬迁讲座:四川省地质灾害易发区群众防灾避险(搬迁安置工程调查与区划技术要求).ppt
- Biometric Security(Course Work).doc
- Biometric Security(Traditional Uni-Modal Face Recognition).pdf
- 中国科学院:公共实验室培训课(PPT讲稿).ppt
- 南京工业大学安全工程:《安全基本概念》课程教学资源(PPT课件)第1章 安全概述、第2章 燃烧理论.ppt
- 南京工业大学安全工程:《安全基本概念》课程教学资源(PPT课件)第3章 实验室安全管理(主讲:张礼敬).ppt
- 南京工业大学安全工程:《安全基本概念》课程教学资源(PPT课件)第6章 国外及港澳台地区高校实验室安全管理.ppt
- 浙江师范大学实验室管理处:国务院办公厅《危险化学品安全综合治理方案》解读.ppt
- 《安全用电》课程PPT教学课件(讲稿).ppt
- 安徽理工大学:《通风安全学》课程教学资源(PPT课件讲稿)第二章 矿井空气流动的基本理论.ppt
- 触电危害与急救方法(PPT讲稿)触电危害及救护.ppt
- 东华大学:校园安全手册.ppt
- 安徽理工大学:信息安全学科综述(PPT课件讲稿)An Overview of Information Security(方贤进).ppt
- 实验室废弃物安全与环境保护(PPT讲稿).ppt