复旦大学:《网络科学导论 Introduction to Network Science》教学课件_8- Modelling networks_image

Network science An English introductory course for undergraduate students Lecturer: Dr. Cong LI ee@ Fudan University Adaptive Networks and Control Lab
Network Science Lecturer: Dr. Cong LI EE @ Fudan University —— An English introductory course for undergraduate students Adaptive Networks and Control Lab

Network Modelling
Network Modelling

To model the Internet topology A model for the Internet topology will: Improve the design of routing protocols Help explain the behavior of traffic Improve the validity of network simulations Estimate the vulnerability to attack Predict the growth of Internet
To model the Internet topology A model for the Internet topology will: • Improve the design of routing protocols • Help explain the behavior of traffic • Improve the validity of network simulations • Estimate the vulnerability to attack • Predict the growth of Internet

Internet Topology Generators Three generations >1980s-No clue Era: Random graph generator Waxman(Er random graph) >1990s- Common sense Era Tier. Transit-Stub >2000s-Power law Era: Structure generator BRITE, Inet(Ba scale-free family) Degree generator
Internet Topology Generators Three generations: 1980s - No clue Era: Waxman (ER random graph) 1990s - Common sense Era: Tier, Transit-Stub 2000s – Power law Era: BRITE, Inet (BA scale-free family) Random graph generator Structure generator Degree generator

First generation of Internet Topology Models 1980s Keyword: random
First generation of Internet Topology Models 1980s Keyword: random

Waxman model 1988 Start with N nodes, randomly distributed At each ste ep. random ick up two nodes u, v, and connect them by an edge with a probability defined as P(u,v)=ae d(u, v)/(B Imax) where d(u, v) is the distance between u and v, Lmax is the largest distance between two nodes How is its similarity with the er model?
Waxman model 1988 • Start with N nodes, randomly distributed. • At each step, randomly pick up two nodes, u, v, and connect them by an edge with a probability defined as – How is its similarity with the ER model? where d(u, v) is the distance between u and v, Lmax is the largest distance between two nodes

Waxman model(cont) 7.588.5 An illustration degree distribution
Waxman model (cont.) An illustration degree distribution

Second generation of Internet Topology Models 1990s Keyword: structure
Second generation of Internet Topology Models 1990s Keyword: structure

Transit-Stub Topology Multi-homed stub 83 Transit Domains Sub domains Stub-Sab edge
Transit-Stub Topology

Transit-Stub Topology Generator Generate all Transit domains Random-graph generation method, each node is a Transit domain Generate nodes in each transit domain random connect these nodes Generate Stubs for each Transit This is similar to above level Randomly select one node from Stub domain and connect this node to transit domain Generate LANs for each Stub This is similar to above level They all have star-shaped structures Connect each lan to a stub domain
Transit-Stub Topology Generator Generate all Transit domains • Random-graph generation method, each node is a Transit domain. • Generate nodes in each Transit domain, random connect these nodes. Generate Stubs for each Transit • This is similar to above level • Randomly select one node from Stub domain and connect this node to Transit domain Generate LANs for each Stub • This is similar to above level • They all have star-shaped structures • Connect each LAN to a Stub domain
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_7- Robustness and fragile.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_6- Scale free networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_5- NW+Searching+Pagerank.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_4- Small world model.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_3- Erdos Ranyi random graphs.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_2- Classic Network Concepts & Properties.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_1- Introduction.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Synchronization in complex networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_谷歌背后的数学.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Virus spread in networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_The structure and function of complex networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Synchronization in complex oscillator networks and smart grids.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Opinion dynamic model-Galam model.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Nonconsensus dynamic opinion model.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Modularity and community structure of networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Kleinberg algorithm.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Kleiberg nature.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Heterogeneous virus spreading-pastor2001.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Emergence of scaling in random networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Detection and prediction with time serial based on network science.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_9- TimeseriesNetworks and ECG.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_10- Evolutionary game.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_11- Spreading on networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_12- Community+Opinion dynamics+consensus.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_13- Collective behaviors+Drone flocking.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_14 - Synchronization.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)01 Classical Encryption Techniques.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)02 Introduction to Cryptography -Classical Encryption Techniques(cont.).pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)03 Modern Block Ciphers.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)04 Public Key Cryptography, RSA.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)05 Message authentication and Hash function.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)06 Stream Cipher.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)07-08 PKI(Public Key Infrastructure)公钥基础设施——公钥技术的应用.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)09-10(1/2)Authentication - 身份认证.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)09-10(2/2)Authentication – Basic protocol constructions – Kerberos.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)11.1 IP Security.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)11.2 Web & EC Security.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)12 Block Chain 区块链 - 密码解决方案集大成者.pdf
- 河南中医药大学:《数据库规划与设计》课程教学资源(Oracle实验指导)实验7 创建及管理Oracle数据表.pdf
- 天津大学:基因序列的比对、挖掘和功能分析(邹权).ppt