复旦大学:《Matlab》(ppt实验英文版)Chapter 8 Nonlinear Equations and Optimization

Introduction to scientific Computing A Matrix Vector Approach Using Matlab Written by Charles FVan Loan 陈文斌 Wbchen(@fudan.edu.cn 复旦大学
Introduction to Scientific Computing -- A Matrix Vector Approach Using Matlab Written by Charles F.Van Loan 陈 文 斌 Wbchen@fudan.edu.cn 复旦大学

Chapter 8 Nonlinear Equations and optimization Finding roots Minimizing a function of one variable Minimizing multivariate functions Solving systems of nonlinear equations
Chapter 8 Nonlinear Equations and Optimization • Finding Roots • Minimizing a function of one variable • Minimizing multivariate functions • Solving systems of nonlinear equations

We consider several types of nonlinear problems. They differ in whether or not the solution sought is a vector or a scalar and whether or not the goal is to produce a root or a minimizer of some given function. The presentation is organized around a family of orbit problems. Suppose the vector-valued functions x2(t) P()= P2(t)= y,(t) Specify the location at time t of a pair of planets that go around the sun. assume that the orbits are elliptical and that the sun is situated at(0,0) Question 1. At what times are the planets and the sun collinear? Iff (t) is the the sine of the angle between PI and P2, then this problem is equivalent to finding a zero of f(t). We focus on the bisection and Newton methods and the matlab zero-finder
We consider several types of nonlinear problems. They differ in whether or not the solution sought is a vector or a scalar and whether or not the goal is to produce a root or a minimizer of some given function. The presentation is organized around a family of “orbit” problems. Suppose the vector-valued functions ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 1 1 y t x t P t y t x t P t Specify the location at time t of a pair of planets that go around the Sun. Assume that the orbits are elliptical and that the sun is situated at (0,0). Question 1. At what times are the planets and the sun collinear? If f(t) is the the sine of the angle between P1 and P2 , then this problem is equivalent to finding a zero of f(t). We focus on the bisection and Newton methods, and the Matlab zero-finder: fzero

Question 2. How close do the two planets get for a period of time? If f(t) is distance from Pi to P2, then this is a single-variable minimization problem. We develop the method of golden section search and discuss the matlab minimizer fmin Question 3. How close do the two orbits get? The method of steepest descent and matlab multivariable minimizer fmins are designed to solve problems of this variety min |P(1)-P(2) Question 4. Where(if at all) do the two orbits intersect? This is an example of a multivariable root- finding problem F(t12t2)=P2(t2)-P(t1)=0 The Newton framework for systems of nonlinear equations is discussed Related topics include the use of finite differences to approximate the Jacobian and the Gauss-Newton method for the nonlinear least squares problem
Question 2. How close do the two planets get for a period of time? If f(t) is distance from P1 to P2 , then this is a single-variable minimization problem. We develop the method of golden section search and discuss the Matlab minmizer fmin. Question 3. How close do the two orbits get? The method of steepest descent and Matlab multivariable minimizer fmins are designed to solve problems of this variety. Question 4. Where (if at all) do the two orbits intersect? This is an example of a multivariable root-finding problem: The Newton framework for systems of nonlinear equations is discussed. Related topics include the use of finite differences to approximate the Jacobian and the Gauss-Newton method for the nonlinear least squares problem. F(t1 ,t2 ) P2 (t2 ) P1(t1) 0 1 1 2 2 2 min , ( ) ( ) 1 2 P t P t t t

Finding roots f(t)=10e31+2e5-6=0 quintic polynomial x 5-2x+x x+7=0 Algorithms in this area are iterative and proceed by producing a sequence of numbers that converge to a root of interest Where do we start the iteration? Does the iteration converge and how fast? How do we know when to terminate the iteration
Finding Roots ( ) 10 2 6 0 3 5 t t f t e e quintic polynomial 2 7 0 5 4 2 x x x x Algorithms in this area are iterative and proceed by producing a sequence of numbers that converge to a root of interest. Where do we start the iteration? Does the iteration converge and how fast? How do we know when to terminate the iteration?

The square root problem Suppose a is a positive real number and that we want to compute its square root geometrically this task is equivalent to constructing a square whose area is A. x
The square root problem Suppose A is a positive real number and that we want to compute its square root. Geometrically, this task is equivalent to constructing a square whose area is A. c c x A x x 2 1

XC 6000/Xc 60.00000000000000100.00000000000000 80.000000000000007500000000000000 77.500000000000007741935483870968 77459677419354857745965642894325 77459666924149057745966692414763 77459666924148347745966692414834 77459666924148347745966692414834 7745966692414834
xc 6000/xc ------------------------------------------- ------- ------ 60.00000000000000 100.00000000000000 80.00000000000000 75.00000000000000 77.50000000000000 77.41935483870968 77.45967741935485 77.45965642894325 77.45966692414905 77.45966692414763 77.45966692414834 77.45966692414834 77.45966692414834 77.45966692414834 77.45966692414834

To improve an approximate square root A=m米A,4 <m<1 √A=√m*2,m∈[.25,1 a good initial guess for the reduced range problem can be obtained by linear interpolation with L(m)=(1+2m)/3 L(m)-√m|≤0.05
To improve an approximate square root 1 4 1 A m*4 , m e A m *2 , m [.25,1] e a good initial guess for the reduced range problem can be obtained by linear interpolation with L(m) (1 2m)/ 3 | L(m) m | 0.05

sqrt(m) 0.8 04 0.2 0.5 15
0 0.5 1 1.5 0 0.2 0.4 0.6 0.81 1.2 m sqrt(m)

x+ C -L(m), ek=xk 2x k It can be shown that the iterates x are al ways in the interval [5, 1, and so k+1 e4≤e3≤e2≤e8≤6≤(05)6
2 2 1 2 1 c c c c x x m m x m x m x x0 L(m),ek xk m 2 1 2 1 k k k e x e It can be shown that the iterates xk are always in the interval [.5,1], and so 2 k 1 k e e 16 16 0 8 1 4 2 2 4 3 e e e e e (.05)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《Matlab》(ppt实验英文版)Chapter 7 The QR and Cholesky Factorizations.ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapter 6 Linear systems.ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapte 4 Numerical Integration.ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapter3 Piecewise Polynomial Interpolation.ppt
- 《计算机网络基础》第7章 网络管理与网络安全.ppt
- 《计算机网络基础》第6章 网页制作技术.ppt
- 《计算机网络基础》第5章 Internet的使用.ppt
- 《小技巧让PDF文件与Word文档之间自由地转换》讲义.pdf
- 同济大学:《计算机文化》(第三版)第六章 网络基础.ppt
- 同济大学:《计算机文化》(第三版)第五章 应用软件和办公软件.ppt
- 同济大学:《计算机文化》(第三版)第四章 系统软件及其常用操作系统.ppt
- 同济大学:《计算机文化》(第三版)第一章 计算机与信息社会.ppt
- 《ASP网页数据库短训教程》第9章 Application对象与 Session对象.ppt
- 《ASP网页数据库短训教程》第8章 Request对象及其使用.ppt
- 《ASP网页数据库短训教程》第7章 ASP程序与ASP的内置对象.ppt
- 《ASP网页数据库短训教程》第6章 VBScript的对象编程.ppt
- 《ASP网页数据库短训教程》第5章 VBScript编程语言(二).ppt
- 《ASP网页数据库短训教程》第4章 VBScript编程语言(一).ppt
- 《ASP网页数据库短训教程》第3章 HTML语言介绍(二).ppt
- 《ASP网页数据库短训教程》第2章 TML语言介绍(一).ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapter 2 Polynomial Interpolation.ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapter 9 The Initial Value Problem.ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapter 5 Matrix computations.ppt
- 复旦大学:《Matlab》(ppt实验英文版)Chapter I power tools of the trade.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第1章 绪论.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第2章 线性表.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第3章 栈和队列.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第4章 串.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第5章 多维数组和广义表.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第6章 树.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第7章 图.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第8章 查找.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第9章 排序.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第七章 图.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第九章 排序.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第八章 查找.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)第十章 文件.ppt
- 同济大学:《数据结构》课程PPT教学课件(C++描述)目录.ppt
- 华南热带农业大学:《计算机导论》第1章 计算机基础知识计.ppt
- 华南热带农业大学:《计算机导论》第2章 微型计算机系统的组成.ppt