美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes1

16.21 Techniques of Structural Analysis and sig Spring 2003 Unit #1 In this course we are going to focus on energy and variational methods for structural analysis. To understand the overall approach we start by con- trasting it with the alternative vector mechanics approach Example of vector mechanics formulation Consider a simply supported beam subjected to a uniformly-distributed load go,(see Fig. 1). To analyze the equilibrium of the beam we consider the free body diagram of an element of length A as shown in the figure and apply Newton's second law ∑F=0:V-△r=(V+△V)=0 ∑MB=0:-V△x-M+(M+△M)+(w△a) Dividing by△ r and taking the limit△x→0: dM
� 16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #1 In this course we are going to focus on energy and variational methods for structural analysis. To understand the overall approach we start by contrasting it with the alternative vector mechanics approach: Example of Vector mechanics formulation: Consider a simply supported beam subjected to a uniformly-distributed load q0, (see Fig.1). To analyze the equilibrium of the beam we consider the free body diagram of an element of length Δx as shown in the figure and apply Newton’s second law: Fy = 0 : V − q0Δx − (V + ΔV ) = 0 (1) � Δx MB = 0 : −V Δx − M + (M + ΔM) + (q0Δx) = 0 (2) 2 Dividing by Δx and taking the limit Δx → 0: dV = −q0 (3) dx dM dx = V (4) 1

A B q a dx Figure 1: Equilibrium of a simply supported beam Eliminating V, we obtain d 2 M +qo=0 Recall from Unified Engineering or 16.20(we'll cover this later in the course also) that the bending moment is related to the deflection of the beam w(a) by the equation d 2 M=El where e is the young's modulus and i is the moment of inertia of the beam Combining 5 and 6, we obtain d 2 dx2(ar2)+=0.0<x<L The boundary conditions of the beam are: The solution of equations 7 and 8 is given by w(a) 24EI (L-c)(L+Lc-a
� � x L q0 z x dx M M+dM V V+dV q0 A B A B Figure 1: Equilibrium of a simply supported beam Eliminating V , we obtain: d2M + q0 = 0 (5) dx2 Recall from Unified Engineering or 16.20 (we’ll cover this later in the course also) that the bending moment is related to the deflection of the beam w(x) by the equation: d2w M = EI (6) dx2 where E is the Young’s modulus and I is the moment of inertia of the beam. Combining 5 and 6, we obtain: d2 d2w dx2 EI dx2 + q0 = 0, 0 < x < L (7) The boundary conditions of the beam are: w(0) = w(L) = 0, M(0) = M(L) = 0 (8) The solution of equations 7 and 8 is given by: q0 � 2 � w(x) = − x (L − x) L2 + Lx − x (9) 24EI 2

Corresponding variational formulation The same problem can be formulated in variational form by introducing the potential energy of the beam system eI/dw dx2 +gow dz and requiring that the solution w(r) be the function minimizing it that also satisfies the displacement boundary conditions (0)=u(L)=0 (11) a particularly attractive use of the variational formulation lies in the determination of approximate solutions. Let's seek an approximate solution to the previous beam example of the form L which has a continuous second derivative and satisfies the boundary condi- tions 11. Substituting w(a)in 10 we obtain El (-2c1)2+gc1(Lx-x2) 2EL2+1 Note that our functional II now depends on CI only. w1(a) is an ap- proximate solution to our problem if CI minimizes II= II(c1). A necessary condition for this is: dIl de, eILC+ 90=0 or C1=-g0Fi, and the approximate solution becomes (L-x) 24EI In order to assess the accuracy of our approximate solution, lets compute the approximate deflection of the beam at the midpoint d1=w1(5) 90 2 3
� Corresponding variational formulation The same problem can be formulated in variational form by introducing the potential energy of the beam system: � L � EI �d2w�2 Π(w) = 0 2 dx2 + q0w dx (10) and requiring that the solution w(x) be the function minimizing it that also satisfies the displacement boundary conditions: w(0) = w(L) = 0 (11) A particularly attractive use of the variational formulation lies in the determination of approximate solutions. Let’s seek an approximate solution to the previous beam example of the form: w1(x) = c1x(L − x) (12) which has a continuous second derivative and satisfies the boundary conditions 11. Substituting w1(x) in 10 we obtain: � L � � EI Π(c1) = 2 (−2c1) 2 + q0c1(Lx − x2 ) dx 0 (13) L3 = 2EILc2 1 + 6 q0c1 Note that our functional Π now depends on c1 only. w1(x) is an approximate solution to our problem if c1 minimizes Π = Π(c1). A necessary condition for this is: dΠ L3 = 4EILc1 + q0 = 0 dc1 6 or c1 = − q0L2 24EI , and the approximate solution becomes: w1(x) = − q0L2 x(L − x) 24EI In order to assess the accuracy of our approximate solution, let’s compute the approximate deflection of the beam at the midpoint δ1 = w1( L 2 ): δ = − q0L2 �L�2 = − q0L4 24EI 2 96EI 3

The exact value 8 =w()is obtained from eqn.9 as L 24EI2(-2 384EI We observe that 61 6 0.8 384 i. e the approximate solution underpredicts the maximum deflection by 20% However, if we consider the following approximation with 3 degrees of freedom (note it also satisfies the essential boundary conditions, eqn. 11) ar)=CiI(L-r)+C2. (L-r)+c3I(L-r) and require that II(c1, C2, c3) be a minimum aII 4cEⅠL+2c2EⅠL2+2c3EⅠL3 Lg0 0 6 2a1B2+42ED3+43E1+0=0 2clEIL+4c2EIL+<CEILs L5 q0 whose solution is El If you replace this values in eqn. 14 and evaluate the deflection at the midpoint of the beam you obtain the exact solution !!
� The exact value δ = w( L 2 ) is obtained from eqn.9 as: δ = − q0 L L − L� � L2 + LL − �L�2� = − 5 q0L4 24EI 2 2 2 2 384 EI We observe that: 1 δ1 96 4 = = = 0.8 δ 5 5 384 i.e. the approximate solution underpredicts the maximum deflection by 20%. However, if we consider the following approximation with 3 degrees of freedom (note it also satisfies the essential boundary conditions, eqn.11): w3(x) = c1x(L − x) + c2x2 (L − x) + c3x(L − x) 2 (14) and require that Π(c1, c2, c3) be a minimum: ∂Π ∂Π ∂Π = 0, = 0, = 0, ∂c1 ∂c2 ∂c3 i.e.: 4 c1 EI L + 2 c2 EI L2 + 2 c3 EI L3 + L3 q0 = 0 6 2 c1 EI L2 + 4 c2 EI L3 + 4 c3 EI L4 + L4 q0 = 0 12 2 c1 EI L3 + 4 c2 EI L4 + 24 c3 EI L5 + L5 q0 = 0 5 20 whose solution is: − (L2 q0) − (L q0) q0 c1 → , c2 → , c3 → 24 EI 24 EI 24 EI If you replace this values in eqn. 14 and evaluate the deflection at the midpoint of the beam you obtain the exact solution !!! 4
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)第六章 飞机总体参数优化.ppt
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)第五章 飞机费用与效能析.ppt
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)第四章 飞机操纵系统设计与分析.ppt
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)第三章 飞机总体参数详细设计.ppt
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)第二章 飞机初始总体参数与方案设计.ppt
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)第一章 序言(主讲:王和平).ppt
- 西北工业大学:《飞行总体设计》课程教学资源(PPT课件讲稿)课程简介与目录(主讲:王和平).ppt
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)参考文献.pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)第四章 飞机操纵系统设计与分析.pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)第二章 飞机初始总体参数与方案设计.pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)第三章 飞机总体参数详细设计(部件设计).pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)第一章 绪言(王和平).pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)第六章 飞机总体参数优化.pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)第五章 飞机费用与效能分析.pdf
- 西北工业大学:《飞行总体设计》课程教学资源(教材讲义)目录(王和平).pdf
- 南京航空航天大学:《飞机总体设计》课程教学资源(讲义)第十九讲 飞行器隐身技术.pdf
- 南京航空航天大学:《飞机总体设计》课程教学资源(讲义)第十七讲 飞机空气动力特性分析.pdf
- 南京航空航天大学:《飞机总体设计》课程教学资源(讲义)第十六讲 飞机重量和重心计算.pdf
- 南京航空航天大学:《飞机总体设计》课程教学资源(讲义)第十四讲 翼吊布局短舱的位置参数确定.pdf
- 南京航空航天大学:《飞机总体设计》课程教学资源(讲义)第十三讲 进气道与尾喷管参数选择.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ1.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes2.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ3.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ2.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)math aside.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ5.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ4.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes3.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ6.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ9.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes4.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ8.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ7.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes5.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)beamenergy.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ10.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes7.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)CQ11.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes6.pdf
- 美国麻省理工大学:《结构分析与设计技术》教学资源(讲义)notes10.pdf