《数值分析》课程PPT教学课件(英文版)Chapter 04 Interpolation and Polynomial Approximation 4.3 Lagrange Approximation

hapter 4 Interpolation and Polynomial Approximation 4. 3 Lagrange approximation
Chapter 4 Interpolation and Polynomial Approximation 4.3 Lagrange Approximation

Example 1.6. Consider the graph y(x) cos(x) over [0.0, 1.2]. (a) Use the nodes xo=0.0andx1=1.2 to construct linear interpolating polynomial Pi(). (b)Use the nodes xo 0.2 and x =1.0 to construct a linear approximating polynomial(). Using (1.22) with the abscissas =0.0 and x1= 1.2 and the ordinates yo cos(0.0) 1.000000 and y1 cos(1.2) 0.362358 produces x-1.2 x-0.0 P1)00000 +0.362358 0.0-1.2 1.2-0.0 =-0.83333(-1.2)+0.301965(-0.0) When the nodes=0.2andx1=1.0 with yo=cos(0.2)=0.980067and y1=cos(1.0)=0.54030 22 are used, the result is x-1.0 x-0.2 Q1(x)=0.980067 +0.540302 0.2-1.0 1.0-0.2 =-1.25083(-1.0)+0.675378(x-0.2)

y=f(x) y=f(x) °1x) Figure 1.11(a) Figure1. 11(b) Figure 1.11(a) The linear approximation of y= Pi(ar) where the nodes ro=0.0 and 1.2 are the end points of the interval [a, b.(b) The linear approximation of y=Q1(a) where the nodes To=0.2 and r1= 1.0 lie inside the interval ja

Table 1.6 Comparison of f(a)=cos(a)and the Linear Approximations Pi(c)and Q1(a) Tk f(ak)=cos(ak) P1(ak) f(ck)-Pi(ak) Q1()f(ck) AllIk 0.0 1.00000 1000000000001.090008 0.090008 0.1 0.995004 0.9468630.048141 10350370.040033 0.2 0.980067 0.8937260.086340 0.980067 0.000000 030.95533084058901147470.925060.030240 0.4 0.921061 0.787453 0.133608 0.870126 0.050935 0.5 0.877583 0.7343160.1432670.8151550.0602428 0.60.8253360.6811790.1441570.7601840.065151 0.7 0.764842 0.6280420.1368000.7052140.059628 0.696707 0.5449050.121802 0.650243 0.046463 09 0.621610 0.5217680.0998420.5952730.026337 0.540302 0.468631 0.0716710.5403020.00000 0.4535960415495008102048532101736 1.2 0.362358 0.362358 0.000000 0.430361 0.068003

The generalization of (1.25)is the construction of a polynomial of a polynomial PN(a)of degree at most N that passes through the N+1 points(co, 30), (31, g1), (N, JN) and has the form P()=∑9LNk( where LNk is the lagrange coefficient polynomial based on these nodes (x-x0)…(x-xk-1)(x-xk+1)…(x-rN) /Nk (xk=0)…(xk-xk-1)(xk-1k+1)…(xk=xN) It is understood that the terms(a-k)and(ck-ak do not appear on the right side of equation(1.27). It is approximate to introduce the product notation for (1.27) and we write 0,j≠k N, K k-a

he Lagrange quadratic interpolating polynomial through the three points(=o, yo) C1, 91), and(2, 92)IS -31(x I --c P2(x)=0 ),(x-0(x-r1) +y1 +y2 0-了1)(0 1-3 2-0)(2-1 131) he Lagrange cubic interpolating polynomial through the four points(ro, yo), (a1,g1) 2, 12), and(=3, 33)is (x-21x-2)(x-x3)(x-20(x-2)(x-x3) 3()=90 (x0-2x1)(0-22)x0-x23) +y1 (1-x0)(x1-2)(x1-23) +y2 (x-20)(x-2x1)(x-x3) +8x-2-(132) (x2-0)(x2-1)2-x3)"°(3-0(x3-1)(x3-

Example 1.7. Consider g=f(r)=cos(a)over(0.0, 1. 2) (a) Use the three nodes 00 =0.0, 1=0.6, and 2=1.2 to construct a quadratic interpolation polynomial P2(a) (b)Use the four nodes 20=0.0, 01=0.4, 22=0.8, and r=1. 2 to construct a cubic interpolation polynomial P3(a)

Using ro=0.0.,x1=0.6,m2=1.2 and yo=cos(0.0)=1,n=c0s(0.6)=0.825336, and 32=cos(1. 2)=0.362358 in equation(1.31) produces P2(x)=1.0 (x-0.6)(x-1.2) (0.0-0.6)0.0-1.2) +0.825336 (x-0.0)(x-1.2 (0.6-0.0)(0.61.2) +0.362358 x-00)(x-0.6) (12-0.0)(1.2-0.6 =1.38889(0-0.6)(x-1.2)-2292599x-00(x-1.2) +0.503275(x-0.00)(x-0.6)

USing To=0.0,1=0.4,x2=0.8,x3=1.2 and yo=cos(0.0)=1.0,=c0s(0.4 0.921061,2=c08(0.8)=0.696707,andy=cos(1.2)=0.362358 in equation(1.32) produces 3(x)=100000 (x-0.4(x-0.8)(x-1.2) 0.0-0.4)(0.0-0.8)(0.0-1.2 +0.921061 x-0.0)(x-0.8)(x-1.2) (0.4-0.0)(0.4-08)04-1.2) +0.696707 (x-0.0)(x-0.4)(x-1.2) (0.8-0.0)(0.8-0.4)(0.8-1.2 +0.362358 (x-0.0)(x-0.4)(x-08) 12-0.0)(1.2-0.4)(12-08 2604167(x-0.4)(x-0.8(x-1.2) +7195789(x-0.0)(x-0.8)(x-1.2) 543021(x-0.0(x-0.4)(x-1.2 +0.943641(x-0.0)(x-0.4)(x-0.8

y=P,(x) CE Figure 1.12(a) Figure 1. 12(b) Figure 1.12(a) The quadratic approximation polynomial y= P2(a) based on the nodes 20=0.0, 21=0.6, and x2=1.2. (b) The cubic approximation polynomial y= Pi(a)based on the nodes To=0.0, 1=0.4, 2=0.8, and =1.2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.4 Newton Polynomial.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.2 Introduction to Interpolation.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.1 Introduction to Quadrature.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.5 Chebyshev Polynomials(Optional).ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 03 Interpolation and polynomial Approximation 3.1 Taylor Series and Calculation of Functions.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.4 Newton-Raphson and Secant Methods.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.1 Introduction to Vectors and Matrices.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.2 Bracketing Methods for Locating a Root.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.6 Iterative Methods for Linear Systems.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.3 Initial Approximation and Convergence Criteria.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.4 Gaussian Elimination and Pivoting.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.1 Iteration for Solving x=g(x).ppt
- 函数的极限.ppt
- 函数的极限.ppt
- 山东科学技术出版社:吉米多维奇《数学分析》习题集题解(五)PDF电子书(第六章 多变量函数的微分法、第七章 带参数的积分).pdf
- 《多元函数微分学》PPT教学课件.ppt
- 《数学模型概述》课程教学资源(PPT课件讲稿)初等模型.ppt
- 《数学模型概述》课程教学资源(PPT课件讲稿)绪论、建模过程、模型分类.ppt
- 咸宁职业技术学院:《概率与统计》课程教学资源(PPT课件)第四章 随机变量初步.ppt
- 咸宁职业技术学院:《概率与统计》课程教学资源(PPT课件)第五章 数理统计初步.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 01 The Solution of Nonlinear Equations 1.6 Padé Approximation.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.3 Error Analysis.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.4 Recursive Rules and Romberg Integration.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.2 Composite Trapezoidal and Simpson’s Rule.ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.6 Gauss-Legendre Integration(Optional).ppt
- 《数值分析》课程PPT教学课件(英文版)Chapter 02 Numerical Integration 2.5 Romberg Integration.ppt
- 函数的极限.ppt
- 18.2 函数的极限18.2.2 x→x0时函数的极限.ppt
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)Exam in Distributed Multimedia Systems.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)Multimedia Systems.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)CARDIFF UNIVERSITY.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)Multimedia BSc Exam 2000 SOLUTIONS.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)Multimedia IGDS MSc Exam 2000.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)Multimedia IGDS MSc Exam 2000 SOLUTIONS.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)第1章 颜色的度量体系.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)第2章 颜色空间变换.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)第2章 颜色空间变换.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)第3章 小波与小波变换.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)第4章 小波图像编码.pdf
- 《A Really Friendly Guide to Wavelets》课程教学资源(书籍文献)小波分析(PDF电子书,共七章).pdf