中国高校课件下载中心 》 教学资源 》 大学文库

《数值分析》课程PPT教学课件(英文版)Chapter 04 Interpolation and Polynomial Approximation 4.3 Lagrange Approximation

文档信息
资源类别:文库
文档格式:PPT
文档页数:21
文件大小:875.5KB
团购合买:点击进入团购
内容简介
Example 1.6. Consider the graph y(x) cos(x) over [0.0, 1.2]. (a) Use the nodes xo=0.0andx1=1.2 to construct linear interpolating polynomial Pi(). (b)Use the nodes xo 0.2 and x =1.0 to construct a linear approximating polynomial().
刷新页面文档预览

hapter 4 Interpolation and Polynomial Approximation 4. 3 Lagrange approximation

Chapter 4 Interpolation and Polynomial Approximation 4.3 Lagrange Approximation

Example 1.6. Consider the graph y(x) cos(x) over [0.0, 1.2]. (a) Use the nodes xo=0.0andx1=1.2 to construct linear interpolating polynomial Pi(). (b)Use the nodes xo 0.2 and x =1.0 to construct a linear approximating polynomial(). Using (1.22) with the abscissas =0.0 and x1= 1.2 and the ordinates yo cos(0.0) 1.000000 and y1 cos(1.2) 0.362358 produces x-1.2 x-0.0 P1)00000 +0.362358 0.0-1.2 1.2-0.0 =-0.83333(-1.2)+0.301965(-0.0) When the nodes=0.2andx1=1.0 with yo=cos(0.2)=0.980067and y1=cos(1.0)=0.54030 22 are used, the result is x-1.0 x-0.2 Q1(x)=0.980067 +0.540302 0.2-1.0 1.0-0.2 =-1.25083(-1.0)+0.675378(x-0.2)

y=f(x) y=f(x) °1x) Figure 1.11(a) Figure1. 11(b) Figure 1.11(a) The linear approximation of y= Pi(ar) where the nodes ro=0.0 and 1.2 are the end points of the interval [a, b.(b) The linear approximation of y=Q1(a) where the nodes To=0.2 and r1= 1.0 lie inside the interval ja

Table 1.6 Comparison of f(a)=cos(a)and the Linear Approximations Pi(c)and Q1(a) Tk f(ak)=cos(ak) P1(ak) f(ck)-Pi(ak) Q1()f(ck) AllIk 0.0 1.00000 1000000000001.090008 0.090008 0.1 0.995004 0.9468630.048141 10350370.040033 0.2 0.980067 0.8937260.086340 0.980067 0.000000 030.95533084058901147470.925060.030240 0.4 0.921061 0.787453 0.133608 0.870126 0.050935 0.5 0.877583 0.7343160.1432670.8151550.0602428 0.60.8253360.6811790.1441570.7601840.065151 0.7 0.764842 0.6280420.1368000.7052140.059628 0.696707 0.5449050.121802 0.650243 0.046463 09 0.621610 0.5217680.0998420.5952730.026337 0.540302 0.468631 0.0716710.5403020.00000 0.4535960415495008102048532101736 1.2 0.362358 0.362358 0.000000 0.430361 0.068003

The generalization of (1.25)is the construction of a polynomial of a polynomial PN(a)of degree at most N that passes through the N+1 points(co, 30), (31, g1), (N, JN) and has the form P()=∑9LNk( where LNk is the lagrange coefficient polynomial based on these nodes (x-x0)…(x-xk-1)(x-xk+1)…(x-rN) /Nk (xk=0)…(xk-xk-1)(xk-1k+1)…(xk=xN) It is understood that the terms(a-k)and(ck-ak do not appear on the right side of equation(1.27). It is approximate to introduce the product notation for (1.27) and we write 0,j≠k N, K k-a

he Lagrange quadratic interpolating polynomial through the three points(=o, yo) C1, 91), and(2, 92)IS -31(x I --c P2(x)=0 ),(x-0(x-r1) +y1 +y2 0-了1)(0 1-3 2-0)(2-1 131) he Lagrange cubic interpolating polynomial through the four points(ro, yo), (a1,g1) 2, 12), and(=3, 33)is (x-21x-2)(x-x3)(x-20(x-2)(x-x3) 3()=90 (x0-2x1)(0-22)x0-x23) +y1 (1-x0)(x1-2)(x1-23) +y2 (x-20)(x-2x1)(x-x3) +8x-2-(132) (x2-0)(x2-1)2-x3)"°(3-0(x3-1)(x3-

Example 1.7. Consider g=f(r)=cos(a)over(0.0, 1. 2) (a) Use the three nodes 00 =0.0, 1=0.6, and 2=1.2 to construct a quadratic interpolation polynomial P2(a) (b)Use the four nodes 20=0.0, 01=0.4, 22=0.8, and r=1. 2 to construct a cubic interpolation polynomial P3(a)

Using ro=0.0.,x1=0.6,m2=1.2 and yo=cos(0.0)=1,n=c0s(0.6)=0.825336, and 32=cos(1. 2)=0.362358 in equation(1.31) produces P2(x)=1.0 (x-0.6)(x-1.2) (0.0-0.6)0.0-1.2) +0.825336 (x-0.0)(x-1.2 (0.6-0.0)(0.61.2) +0.362358 x-00)(x-0.6) (12-0.0)(1.2-0.6 =1.38889(0-0.6)(x-1.2)-2292599x-00(x-1.2) +0.503275(x-0.00)(x-0.6)

USing To=0.0,1=0.4,x2=0.8,x3=1.2 and yo=cos(0.0)=1.0,=c0s(0.4 0.921061,2=c08(0.8)=0.696707,andy=cos(1.2)=0.362358 in equation(1.32) produces 3(x)=100000 (x-0.4(x-0.8)(x-1.2) 0.0-0.4)(0.0-0.8)(0.0-1.2 +0.921061 x-0.0)(x-0.8)(x-1.2) (0.4-0.0)(0.4-08)04-1.2) +0.696707 (x-0.0)(x-0.4)(x-1.2) (0.8-0.0)(0.8-0.4)(0.8-1.2 +0.362358 (x-0.0)(x-0.4)(x-08) 12-0.0)(1.2-0.4)(12-08 2604167(x-0.4)(x-0.8(x-1.2) +7195789(x-0.0)(x-0.8)(x-1.2) 543021(x-0.0(x-0.4)(x-1.2 +0.943641(x-0.0)(x-0.4)(x-0.8

y=P,(x) CE Figure 1.12(a) Figure 1. 12(b) Figure 1.12(a) The quadratic approximation polynomial y= P2(a) based on the nodes 20=0.0, 21=0.6, and x2=1.2. (b) The cubic approximation polynomial y= Pi(a)based on the nodes To=0.0, 1=0.4, 2=0.8, and =1.2

共21页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档