中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 4 Fields of Stationary Electric Charges:III

Chapter 4 Fields of stationary Electric Charges III Capacitance of An Isolated Conductor Capacitance btwn TWo Conductors Potential Energy of a Charge Distribution Energy density in an Electric field Forces on Conductors
Chapter 4 Fields of Stationary Electric Charges : III ◼ Capacitance of An Isolated Conductor ◼ Capacitance btwn Two Conductors ◼ Potential Energy of a Charge Distribution ◼ Energy Density in an Electric Field ◼ Forces on Conductors

4.1 Capacitance of an isolated conductor Consider an isolated conductor, either carrying charges or not We know that the potential v on the conductor is always a constant Both experiments and theory show that, as charge is added to it, its potential rises. The magnitude of the change in potential is a the amount of charge added and depends on the geomet- rical configuration of the conductor as well. This fact can be summarized as C is called the capacitance of the conductor

Remarks. (1)The physical meaning of C is the amount of charge needed to rise the potential by a unit (volt. In SI unit, C has the unit farad collom l farad= 1 volt (2) Although C has been defined to be Q/V, it actually depends only on the size and shape of the conductor Example 1. isolated spherical conductor of radius r If it has a charge q on it, then the potential is Q 4T∈0 so the capacitance gIven by C=Q/V=4丌o0R

4.2 Capacitance btwn two conductors Note that an isolated conductor certain restrictions (1)In reality, a conductor is always under influence of the environment So it's difficult to isolate a conductor (2) An isolated conductor has a small C. For instance, a conductor of the size of the earth=6.4x 10%m C=4m0R=7×10-F Thus, we need capacitors consisting of two conductors

Example 1. Parallel-plate capacitor(see Fig 4-2) Each of the two plates has an area a and the spacing bwtn them is s One carries a charge Q, the other carries So the field btwn is e=0= and the potential difference is V=es the capacitance is ∈0 Say, A=(50 M),s=0.1mM, then C N 28 X 10+ F. It's greater than that of the earth

A Figure 4-2 Parallel-plate capacitor. The lower end of the small cylindrical figure is situated inside the lower plate where E=0

Example 2. Concentric-spherical-shell capacitor One has a radius ra and carries a charge Q, the le other Bb and -Q. (rb> ra So the field btwn the shells is e 丌e0T and the potential difference bwtn the shells is BbE·dl=Ra4 Qdr Q 1 1 a 2 trEo Ra rb le capacitance is Q4丌0B2aB v Rb- Ra As Rb Is approaches to the isolated conduc- tor Taking Ra rb=60M, rb- Ra=0. 1mM, then C is as large as that of the earth

Capacitors Connected in Parallel(see Fig 4-3) Two capacitors C1 and C2 carrying charges Q1 and The potential difference is V, the same for both ca actors The total charge is Q=Q1+Q2=C1V+C2V=(C1+C2)V, so the total capacitanceIs (C1+C2 Conclusion for capacitors c; i=1, 2,..connected in arallel, the total capacitance is ∑

Q Q+Q Cr C C Figure 4-3 The single capacitor C has the same capacitance as the two capacitors Ci and Ca connected in parallel

Capacitors Connected in Series(see Fig 4-4) Two capacitors Cl and C2, each carries a charge Q The potential differences for Cl, and for C2, are The total potential difference is V=V1+V2 QQ + + and thus the total capacitance is v C1+C Conclusion: for capacitors C i=1, 2,... connected in series, the total capacitance is given by
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 3 Fields of Stationary Electric Charges:II.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 20 Electromagnetic Waves.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 2 Fields of Stationary Electric Charges.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 19 Maxwell’s Equations.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 14 Magnetic Fields:VII.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 13 Magnetic Fields:VI.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 12 Magnetic Fields:V.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 11 Magnetic Fields:IV.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 10 Magnetic Fields:III.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 1 Vectors.ppt
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第九章 介质中的电磁理论.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第八章 磁介质.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第七章 静电场与物质的相互作用.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第六章 电磁场的 Maxwell 方程组和电磁波.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第五章 交流电路.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第四章 电磁感应(主讲:(叶邦角).pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第三章 真空中的静磁场.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第二章 稳恒电流(2.6)基尔霍夫定律.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第二章 稳恒电流(2.5)电源及电动势.pdf
- 中国科学技术大学:《电磁学》课程教学资源(教案讲义)第二章 稳恒电流(2.4)欧姆定律.pdf
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 5 Direct Currents in Electric Circuits.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 6 Dielectrics:I.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 7 Dielectrics:II.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 8 Magnetic Fields:I.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Chapter 9 Magnetic Fields:II.ppt
- 中国科学技术大学:《电磁学》课程教学资源(PPT课件讲稿)Electromagnetism.ppt
- 重庆工程职业技术学院:《爆破施工技术》第一章 岩石性质与分级(1.1)岩石性质(邹绍明)1.1岩石性质 1.2岩石分级.ppt
- 重庆工程职业技术学院:《爆破施工技术》第二章(2.1)风动凿岩机(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第二章(2.2)潜孔钻机(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第三章(3.1)炸药特征及分类(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第三章(3.2)工业炸药主要性能(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第三章(3.3)硝铵类炸药(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第四章(4.1)起爆炸药(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第四章(4.2)导火索(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第四章(4.3)导爆索(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第四章(4.4)雷管(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第四章(4.5)导爆管(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第五章(5.1)导火索起爆技术(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第五章(5.2)导爆索起爆技术(邹绍明).ppt
- 重庆工程职业技术学院:《爆破施工技术》第五章(5.3)电力起爆技术(邹绍明).ppt