《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)04 LMI Control Toolbox For Use with MATLAB User’s Guide Version 1

LMI Control Toolbox For Use with MATLAB Pascal Gahinet Arkadi nemirouski Alan J. Laub Mahmoud Chilali Computation Visualization Programming User's Guide The MathWorks Version 1
For Use with MATLAB Pascal Gahinet Arkadi Nemirovski Alan J. Laub Mahmoud Chilali ® User’s Guide Version 1 LMI Control Toolbox

Contents Preface About the authors Acknowledgments Introduction Linear Matrix Inequalities 1-2 Toolbox Features LMIs and lmi problems The Three Generic LMi Problems Further Mathematical Background 1-9 References Uncertain Dynamical Systems Linear Time-Invariant Systems SYSTEM Matrix 2-3 Time and Frequency Response Plots Interconnections of Linear Systems
i Contents Preface About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Toolbox Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 LMIs and LMI Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 The Three Generic LMI Problems . . . . . . . . . . . . . . . . . . . . . . . 1-5 Further Mathematical Background . . . . . . . . . . . . . . . . . . . . . 1-9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 2 Uncertain Dynamical Systems Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . . . 2-3 SYSTEM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Time and Frequency Response Plots . . . . . . . . . . . . . . . . . . . 2-6 Interconnections of Linear Systems . . . . . . . . . . . . . . . . . . . . 2-9

Model Uncertainty Uncertain State-Space Models Affine Parameter-Dependent Models 2-15 Quantification of Parameter Uncertainty Simulation of Parameter-Dependent Systems From Affine to Polytopic Models Example 21 Linear-Fractional Models of Uncertainty 2-23 How to derive such models Specification of the Uncertainty From Affine to linear-Fractional models References Robustness analysis 3 Quadratic Lyapunov Functions 3-3 LMI Formulation Quadratic Stability 36 Maximizing the quadratic Stability region 3-8 Quadratic Hoo Performance 3-9 3-10 Parameter-Dependent Lyapunov Functions Stability analysis 3-14 alvis Structured Singular value .3-17 Robust Stability analysis 3-19 Robust Performance 3-24 Real Parameter Uncertainty l1 Contents
ii Contents Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Uncertain State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Polytopic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Affine Parameter-Dependent Models . . . . . . . . . . . . . . . . . . . . 2-15 Quantification of Parameter Uncertainty . . . . . . . . . . . . . . . . 2-17 Simulation of Parameter-Dependent Systems . . . . . . . . . . . . . 2-19 From Affine to Polytopic Models . . . . . . . . . . . . . . . . . . . . . . . . 2-20 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 Linear-Fractional Models of Uncertainty . . . . . . . . . . . . . . . 2-23 How to Derive Such Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 Specification of the Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 2-26 From Affine to Linear-Fractional Models . . . . . . . . . . . . . . . . . 2-32 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35 3 Robustness Analysis Quadratic Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . 3-3 LMI Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Quadratic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Maximizing the Quadratic Stability Region . . . . . . . . . . . . . . . . 3-8 Decay Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Quadratic H∞ Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Parameter-Dependent Lyapunov Functions . . . . . . . . . . . . 3-12 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 µ Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 Structured Singular Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 Robust Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Robust Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 The Popov Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24 Real Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

Example 3-28 References 3-32 State-Feedback Synthesis Multi-Objective State-Feedback Pole Placement in LMI Regions 45 LMI Formulation 4-7 Extension to the multi-Model case 4-9 The Function msfsyn 413 References 4-18 Synthesis of Hoo Controllers Hoo Control 53 Riccati- and LMI-Based approaches Hoo Synthesis Validation of the Closed-Loop System Multi-Objective Hoo Synthesis LMI Formulation 516 The Function hinfmix 520 Loop-Shaping Design with hinfmix
iii Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32 4 State-Feedback Synthesis Multi-Objective State-Feedback . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Pole Placement in LMI Regions . . . . . . . . . . . . . . . . . . . . . . . . 4-5 LMI Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 Extension to the Multi-Model Case . . . . . . . . . . . . . . . . . . . . . . . 4-9 The Function msfsyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 5 Synthesis of H∞ Controllers H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Riccati- and LMI-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 5-7 H∞ Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Validation of the Closed-Loop System . . . . . . . . . . . . . . . . . . . 5-13 Multi-Objective H∞ Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 LMI Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 The Function hinfmix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20 Loop-Shaping Design with hinfmix . . . . . . . . . . . . . . . . . . . . . . 5-20

Loop Shaping 6 The Loop-Shaping Methodology 6-2 The Loop-Shaping Methodology Example 6-5 f the sh Nonproper Filters and sderiv 6-12 Specification of the Control Structure 6-14 Controller Synthesis and Validation 16 Practical Considerations 6-18 Loop Shaping with Regional Pole Placement 6-19 References 6-24 Robust gain -scheduled controllers Gain-Scheduled Control 7-3 Synthesis of Gain-Scheduled H. Controllers Simulation of Gain-Scheduled Control Systems 7-9 Design Example 7-10
iv Contents References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22 6 Loop Shaping The Loop-Shaping Methodology . . . . . . . . . . . . . . . . . . . . . . . . 6-2 The Loop-Shaping Methodology . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Specification of the Shaping Filters . . . . . . . . . . . . . . . . . . . . 6-10 Nonproper Filters and sderiv . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 Specification of the Control Structure . . . . . . . . . . . . . . . . . 6-14 Controller Synthesis and Validation . . . . . . . . . . . . . . . . . . . 6-16 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 Loop Shaping with Regional Pole Placement . . . . . . . . . . . 6-19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 7 Robust Gain-Scheduled Controllers Gain-Scheduled Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 Synthesis of Gain-Scheduled H• Controllers . . . . . . . . . . . . . 7-7 Simulation of Gain-Scheduled Control Systems . . . . . . . . . . 7-9 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10

References The lMii lab Background and terminology Overview of the lmi lab 8-6 Specifying a System of LMIs A Simple Example 8-9 setlmis and getlmis Imilar Limiter The lmi Editor lmiedit How It all work 8-18 Retrieving Information 8-21 Imiinfo 8-21 Iminbr and matnbr 8-21 LMI Solvers From Decision to Matrix Variables and vice versa 8-28 Validating Results Modifying a System of LMIs delli 8-3 setmvar Advanced Topics 8-83 Structured matrix variables 8-33 Complex-Valued LMIs Specifying c" Objectives for mincx Feasibility radius 8-39
v References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 8 The LMI Lab Background and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Overview of the LMI Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 Specifying a System of LMIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 setlmis and getlmis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 lmivar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 lmiterm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 The LMI Editor lmiedit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 How It All Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 lmiinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 lminbr and matnbr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 LMI Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 From Decision to Matrix Variables and Vice Versa . . . . . . 8-28 Validating Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 Modifying a System of LMIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30 dellmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30 dellmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30 setmvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 Structured Matrix Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 Complex-Valued LMIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-35 Specifying cTx Objectives for mincx . . . . . . . . . . . . . . . . . . . . . 8-38 Feasibility Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-39

Well-Posedness issues Semi-Definite B(x)in gevp Problems Efficiency and Complexity Issues 4红2 Solving M PTXQ+QTXTP<0 References 8-44 Command reference List of functions 93 Hoo Control and Loop Shaping II Lab: Specifying and Solving LMIs 97 LMI Lab: Additional Facilities vI Contents
vi Contents Well-Posedness Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-40 Semi-Definite B(x) in gevp Problems . . . . . . . . . . . . . . . . . . . . 8-41 Efficiency and Complexity Issues . . . . . . . . . . . . . . . . . . . . . . . 8-41 Solving M + PTXQ + QTXTP < 0 . . . . . . . . . . . . . . . . . . . . . . . . 8-42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-44 9 Command Reference List of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 H∞ Control and Loop Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 LMI Lab: Specifying and Solving LMIs . . . . . . . . . . . . . . . . . . 9-7 LMI Lab: Additional Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8

Prefe Ab。 ut the authors Dr Pascal Gahinet is a reserach fellow at INRIA Rocquencourt, France. His research interests include robust control theory, linear matrix inequalities numerical linear algebra, and numerical software for control Prof Arkadi Nemirovski is with the Faculty of Industrial Engineering and Management at Technion, Haifa, Israel. His research interests include convex optimization, complexity theory, and non-parametric statistics Prof Alan J. Laub is with the Electrical and Computer engineering Department of the University of California at Santa Barbara, USA. His research interests are in numerical analysis, mathematical software scientific computation, computer-aided control system design, and linear and large-scale trol and filtering Mahmoud Chilali is completing his Ph D at INRIA Rocquencourt, france His thesis is on the theory and applications of linear matrix inequalities
Preface viii About the Authors Dr. Pascal Gahinet is a reserach fellow at INRIA Rocquencourt, France. His research interests include robust control theory, linear matrix inequalities, numerical linear algebra, and numerical software for control. Prof. Arkadi Nemirovski is with the Faculty of Industrial Engineering and Management at Technion, Haifa, Israel. His research interests include convex optimization, complexity theory, and non-parametric statistics. Prof. Alan J. Laub is with the Electrical and Computer Engineering Department of the University of California at Santa Barbara, USA. His research interests are in numerical analysis, mathematical software, scientific computation, computer-aided control system design, and linear and large-scale control and filtering theory. Mahmoud Chilali is completing his Ph.D. at INRIA Rocquencourt, France. His thesis is on the theory and applications of linear matrix inequalities in control

Acknowledgments Acknowledgments The authors wish to express their gratitude to all colleagues who directly or indirectly contributed to the making of the LMI Control Toolbox. Special chanks to Pierre Apkarian, gregory Becker, Hiroyuki Kajiwara, and Anca Ignat for their help and contribution. Many thanks also to those who tested and helped refine the software, including bobby bodenheimer, Markus Lu, Roy Lurie, Jason Ly, John Morris, Ravi Prasanth, Michael Safonov bo Brandstetter. Eric Feron, K.C. Goh. Anders Helmersson. Ted Iwasaki. Ji Carsten Scherer, Andy Sparks, Mario Rotea, Matthew Lamont Tyler, Jim Tung, and John Wen. apologies, finally to those we may have omitted The work of Pascal Gahinet was supported in part by INRIA
Acknowledgments ix Acknowledgments The authors wish to express their gratitude to all colleagues who directly or indirectly contributed to the making of the LMI Control Toolbox. Special thanks to Pierre Apkarian, Gregory Becker, Hiroyuki Kajiwara, and Anca Ignat for their help and contribution. Many thanks also to those who tested and helped refine the software, including Bobby Bodenheimer, Markus Brandstetter, Eric Feron, K.C. Goh, Anders Helmersson, Ted Iwasaki, Jianbo Lu, Roy Lurie, Jason Ly, John Morris, Ravi Prasanth, Michael Safonov, Carsten Scherer, Andy Sparks, Mario Rotea, Matthew Lamont Tyler, Jim Tung, and John Wen. Apologies, finally, to those we may have omitted. The work of Pascal Gahinet was supported in part by INRIA

Introduction Linear Matrix Inequalities Toolbox Features LMIIs and lmi Problems 1-4 The Three Generic LMi Problems Further Mathematical Background References 1-10
1 Introduction Linear Matrix Inequalities . . . . . . . . . . . . . 1-2 Toolbox Features . . . . . . . . . . . . . . . . . . 1-3 LMIs and LMI Problems . . . . . . . . . . . . . . . 1-4 The Three Generic LMI Problems . . . . . . . . . . . . 1-5 Further Mathematical Background . . . . . . . . . 1-9 References . . . . . . . . . . . . . . . . . . . . . 1-10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)03 Control System Toolbox For Use with MATLAB Using the Control System Toolbox Version 1.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)02 Control System Toolbox For Use with MATLAB Getting Started Version 5.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)01 MATLAB The Language of Technical Computing Get started with Matlab Version 6.pdf
- 《工程测试技术》讲义ppt电子课件.ppt
- 《电子电力技术》(英文版) supplement.pdf
- 《电子电力技术》(英文版) Chapter 8 Composite Converters.pdf
- 《电子电力技术》(英文版) Chapter 7 Soft-Switching Techniques.pdf
- 《电子电力技术》(英文版) Chapter 6 PWM Techniques.pdf
- 《电子电力技术》(英文版) Chapter 5 DC to AC Converters (Inverters).pdf
- 《电子电力技术》(英文版) Chapter 4 AC to AC Converters AC Controllers and Frequency Converters.pdf
- 《电子电力技术》(英文版) Chapter 3 DC to DC Converters.pdf
- 《电子电力技术》(英文版) Chapter 2 AC to DC Converters (Rectifiers).pdf
- 《电子电力技术》(英文版) Chapter 1 Power Electronic Devices.pdf
- 《电子电力技术》(英文版) Introduction.pdf
- 《电路基础》课程教学资源(PPT课件讲稿)实验讲义(共六个).ppt
- 武汉职业技术学院:《电路基础》课程教学资源(PPT课件讲稿)实验报告.ppt
- 武汉职业技术学院:《电路基础》课程教学资源(PPT课件讲稿)课程设计.ppt
- 武汉职业技术学院:《电路基础》课程教学资源(PPT课件讲稿,共七章).ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿,共七个实验).ppt
- 《超声波传感器》讲义.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)06 MATLAB The Language of Technical Computing Creating Graphical User Interfaces Version 6.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)08 Optimization Toolbox For Use with MATLAB User’s Guide Version 2.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)05 SIMULINK Model-Based and System-Based Design Simulink Reference Version 5.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)09 SIMULINK Model-Based and System-Based Design Writing S-Functions Version 5.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)10 SIMULINK Model-Based and System-Based Design Writing S-Functions Version 5.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)13 The MPC Simulink Library User’s Guide Version 1.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)11 MATLAB The Language of Technical Computing MAT-File Format Version 5 Version 5.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)12 System Identification Toolbox For Use with MATLAB User’s Guide Version 5.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)14 Model Predictive Control Toolbox For Use with MATLAB User’s Guide Version 1.pdf
- 《自动控制原理》课程教学资源(The MathWorks - MATLAB 相关电子书籍)07 GraphicsMATLAB The Language of Technical Computing Using MATLAB Graphics Version 6.pdf
- 《环境工程仿真与控制》课程教学书籍(教材)环境工程仿真与控制PDF电子书(共五章).pdf
- 《供配电技术》第三章 供电系统的一次接线.ppt
- 《供配电技术》序言.ppt
- 《供配电技术》目录.doc
- 《供配电技术》第一章 概述.doc
- 《供配电技术》第十章 供配电系统的运行维护与检修试验.doc
- 《供配电技术》第十章 供配电系统的运行维护与检修试验.ppt
- 《供配电技术》第十一章 课程设计题目.doc
- 《供配电技术》第十一章 课程设计题目.ppt
- 《供配电技术》第一章 概述.ppt