同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)Decision Tree

Big data Analysis and mining Decision Tree Qinpei zhao赵钦佩 qinpeizhao@tongji.edu.cn 2015 Fall 2021/2/9
2021/2/9 1 Big Data Analysis and Mining Qinpei Zhao 赵钦佩 qinpeizhao@tongji.edu.cn 2015 Fall Decision Tree

Illustrating Classification Task Tid Attrib Attrib2 Attrib3 Class Learning algorithm Small Medium120 Induction Yes Medium Yes 220K No Learn 8 85K Model No Medium No Small 90K Yes Training set Model Apply Tid Attrib Attrib2 Attrib3 Class Model 12 Yes Medium 110K Deduction 14 No 15 67K est set
Illustrating Classification Task Apply Model Induction Deduction Learn Model Model Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes 10 Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K ? 12 Yes Medium 80K ? 13 Yes Large 110K ? 14 No Small 95K ? 15 No Large 67K ? 10 Test Set Learning algorithm Training Set

Classification: Definition a Given a collection of records(training set e Each record contains a set of attributes one of the attributes is the class find a mode for class attribute as a function of the values of other attributes a Goal: previously unseen records should be assigned a class as accurately as possible atest set is used to determine the accuracy of the model Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it
Classification: Definition ◼ Given a collection of records (training set ) ◆ Each record contains a set of attributes, one of the attributes is the class. ◼ Find a model for class attribute as a function of the values of other attributes. ◼ Goal: previously unseen records should be assigned a class as accurately as possible. ◆ A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it

Examples of Classification Task Predicting tumor cells as benign or malignant Classifying credit card transactions as legitimate or fraudulent Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil Categorizing news stories as finance, weather, entertainment, sports, etc
Examples of Classification Task ◼ Predicting tumor cells as benign or malignant ◼ Classifying credit card transactions as legitimate or fraudulent ◼ Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil ◼ Categorizing news stories as finance, weather, entertainment, sports, etc

What is a Decision Tree? u An inductive learning task o Use particular facts to make more generalized conclusions aA predictive model based on a branching series of Boolean tests o These smaller boolean tests are less complex than a one-stage classifier a Let's look at a sample decision tree
◼ An inductive learning task ◆ Use particular facts to make more generalized conclusions ◼ A predictive model based on a branching series of Boolean tests ◆ These smaller Boolean tests are less complex than a one-stage classifier ◼ Let’s look at a sample decision tree… What is a Decision Tree?

Example Tax cheating id Refund Marital Taxable Splitting Attributes Status Income Single 125K No 2No Married 100K No Refund No Yes No Single 70K 4 Yes Married 120K No NO Mast 5No Divorced 95K Yes Single, DiVorced Married nO Married 60K No 7 Yes Divorced220K No TaxIn NO 8No Single 85K Yes 80K nO Married 75K No NO YES 10No Single 90K Training data Model: decision tree
Tid Refund Marital Status Taxable Income Cheat 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes 10 Refund MarSt TaxInc NO YES NO NO Yes No Single, Divorced Married 80K Splitting Attributes Training Data Model: Decision Tree Example – Tax cheating

Example-Tax cheating MarT Single Married id Refund marital Taxable ivorced Status Income Cheat NO Refund Yes Single 125K Yes 2No Married 100K No 3No Single70K No NO TaxIng 4 Yes Married 120K No 80K 5No Divorced95K Yes NO YES nO Married 60K 7 Yes Divorced220K No Single 85K 9No Married 75K No There could be more than one tree that 10No Single 90K Yes fits the same data!
Tid Refund Marital Status Taxable Income Cheat 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes 10 MarSt Refund TaxInc NO YES NO NO Yes No Married Single, Divorced 80K There could be more than one tree that fits the same data! Example – Tax cheating

Decision Tree Classification Task Tree Tid Attrib 1 Attrib Attrib3 Class Induction algorithm Induction Learn Model Medium 75K Yes Training Set Mode Apply Decision Model ree Tid Attrib1 Attrib2 Attrib3 Class Deduction 14No Small 67K Test Set
Decision Tree Classification Task Apply Model Induction Deduction Learn Model Model Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes 10 Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K ? 12 Yes Medium 80K ? 13 Yes Large 110K ? 14 No Small 95K ? 15 No Large 67K ? 10 Test Set Tree Induction algorithm Training Set Decision Tree

Apply Model to Test Data Test Data Start from the root of tree Refund marita Taxable Status Income Cheat No Married 80K Refund Yes No NO Mast Single, DWorced Married TaxIne NO <80K NO YES
Apply Model to Test Data Refund MarSt TaxInc NO YES NO NO Yes No Single, Divorced Married 80K Refund Marital Status Taxable Income Cheat No Married 80K ? 10 Test Data Start from the root of tree

Apply Model to Test Data Test Data Refund marita Taxable Status Income Cheat No Married 80K Refund Yes No NO Mast Single, DWorced Married TaxIne NO <80K NO YES
Apply Model to Test Data Refund MarSt TaxInc NO YES NO NO Yes No Single, Divorced Married 80K Refund Marital Status Taxable Income Cheat No Married 80K ? 10 Test Data
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《软件工程》课程教学资源(PPT课件讲稿)详细设计.ppt
- 《汇编语言程序设计》课程教学资源(PPT课件讲稿)第二章 IBM-PC微机的功能结构.ppt
- 清华大学:高校信息化建设理论与规划(PPT讲稿).ppt
- 数据挖掘10大算法产生过程(PPT讲稿).ppt
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第九章 多媒体技术基础.ppt
- 香港浸会大学:Computer Security(PPT课件讲稿)Cryptography Chapter 1 Symmetric Ciphers.ppt
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)Getting to Know Your Data.ppt
- 《计算机系统安全》课程PPT教学课件(信息安全与管理)第九章 防火墙.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第六章 传输层.ppt
- 《PHP程序设计》教学资源(PPT课件讲稿)项目七 Ajax商品发布.ppt
- 《电脑组装与维护实例教程》教学资源(PPT课件讲稿)第14章 系统的维护.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第五讲 分布式系统的安全(主讲:周福才).ppt
- 《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第十章 智能优化计算简介.ppt
- 《3ds Max 9》教学资源(PPT课件)第8章 灯光、摄影机、渲染输出.ppt
- 编译程序构造 COMPILER CONSTRUCTION(PPT讲稿)原理与实践 Principles and Practice.ppt
- 上海交通大学:《程序设计》课程教学资源(PPT课件讲稿)第7章 间接访问——指针.ppt
- 《数据库系统概论》课程教学资源(PPT课件讲稿)数据结构实用教程(共十章).ppt
- 大连理工大学:《计算机网络》课程教学资源(PPT课件讲稿)Chapter 1 Introduction(roadmap,主讲:孙伟峰).ppt
- 《计算机网络基础》课程PPT教学课件(讲稿)第4章 IP协议.ppt
- 西安交通大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第4章 存储器系统接口.ppt
- 上海交通大学:《网络科学导论》课程PPT教学课件(Network Science An Introduction)Chapter 4 Degree Correlations & Community Structure.pptx
- 中国科学技术大学:《数据结构与数据库》课程教学资源(PPT课件讲稿)第五章 串和数组.pps
- 最小生成树(PPT课件讲稿)Minimum Spanning Trees.pptx
- 《数据结构》课程教学资源(PPT课件讲稿)第10章 内排序.ppt
- jQuery个人主页(PPT讲稿).ppt
- 《Internet技术与应用》课程PPT教学课件(讲稿)第3讲 双绞线制作和传输介质.ppt
- 中国铁道出版社:《局域网技术与组网工程》课程教学资源(PPT课件讲稿)第4章 Windows Server系统工程.ppt
- 《电子商务概论》课程教学资源(PPT课件)第十章 电子商务安全技术.ppt
- 《C程序设计》课程电子教案(PPT课件讲稿)第二章 基本数据类型及运算.ppt
- 中国科学技术大学:云计算基本概念、关键技术、应用领域及发展趋势.pptx
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)异常处理 Exception Handling.ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第三章 流水线技术.ppt
- 四川大学:Object-Oriented Design and Programming(Java,PPT课件)3.2 Graphical User Interface.ppt
- 《编辑原理》课程教学资源(PPT课件)目标代码生成.pptx
- 上海交通大学:操作系统安全(PPT课件讲稿)设备管理与I/O系统.pps
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第7章 多处理器及线程级并行 7.1 引言 7.2 集中式共享存储器体系结构.pptx
- 《单片机原理及应用》课程教学资源(PPT课件讲稿)第11章 单片机应用系统的串行扩展.ppt
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)normalization.ppt
- 《计算机软件技术基础》课程教学资源(PPT课件讲稿)排序(教师:曾晓东).ppt
- 四川大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)Unit5 Introduction to Computer Networks.ppt