复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)30/30

I Introduction to Set Theory ◆1. Sets and subsets Representation of set: o Listing elements Set builder notion, Recursive definition ◆∈,c,C ◆P(A) 2. Operations on Sets o Operations and their properties ◆A=?B ◆AB, and bca ◆ Properties o Theorems, examples, and exercises
ⅠIntroduction to Set Theory 1. Sets and Subsets Representation of set: Listing elements, Set builder notion, Recursive definition , , P(A) 2. Operations on Sets Operations and their Properties A=?B AB, and B A Properties Theorems, examples, and exercises

+3. Relations and Properties of relations ◆ reflexive, irreflexive o symmetric, asymmetric ,antisymmetric ◆ Transitive Closures of relations ◆r(R),s(R),t(R)=? Theorems, examples, and exercises 44. Operations on relations Inverse relation, Composition o Theorems, examples, and exercises
3. Relations and Properties of relations reflexive ,irreflexive symmetric , asymmetric ,antisymmetric Transitive Closures of Relations r(R),s(R),t(R)=? Theorems, examples, and exercises 4. Operations on Relations Inverse relation, Composition Theorems, examples, and exercises

紫◆5. Equivalence relations o Equivalence relations ◆ equivalence class .6.Partial order relations and Hasse Diagrams Extremal elements of partially ordered sets: maximal element. minimal element o greatest element, least element o upper bound, lower bound least upper bound, greatest lower bound o Theorems examples. and exercises
5. Equivalence Relations Equivalence Relations equivalence class 6.Partial order relations and Hasse Diagrams Extremal elements of partially ordered sets: maximal element, minimal element greatest element, least element upper bound, lower bound least upper bound, greatest lower bound Theorems, examples, and exercises

◆7. Functions ◆ one to one,onto, o one-to-one correspondence 4 Composite functions and Inverse functions ◆ Cardinality,Np o Theorems, examples, and exercises
7.Functions one to one, onto, one-to-one correspondence Composite functions and Inverse functions Cardinality, 0 . Theorems, examples, and exercises

tII Combinatorics 1. Pigeonhole principle Pigeon and pigeonholes example, exercise
II Combinatorics 1. Pigeonhole principle Pigeon and pigeonholes example,exercise

Permutations and combinations Permutations of sets combinations of sets circular permutation Permutations and Combinations of multisets Formulae o inclusion-exclusion principle generating functions integral solutions of the equation ◆ example, exercise
2. Permutations and Combinations Permutations of sets, Combinations of sets circular permutation Permutations and Combinations of multisets Formulae inclusion-exclusion principle generating functions integral solutions of the equation example,exercise

Applications of Inclusion -Exclusion principle theorem 3.15, theorem 3. 16,example, exercise Applications generating functions and Exponential generating functions e=1+x+x2/2!+.+x"/n!+…; x+x2/2!++xm/n!+,=ex-1 ex=1-x+x2/2!+…+(-1)"x"/n!+……; 1+x2+…+x2n(2n)+…=(ex+e)/2; x+x3/3!+…+x2am+1(2n+1)+…,=(ex-e-)2 +3. recurrence relation o Using Characteristic roots to solve recurrence relations USing Generating functions to solve recurrence relations ◆ example, exercise
Applications of Inclusion-Exclusion principle theorem 3.15,theorem 3.16,example,exercise Applications generating functions and Exponential generating functions e x=1+x+x2 /2!+…+xn /n!+…; x+x2 /2!+…+xn /n!+…=ex -1; e -x=1-x+x2 /2!+…+(-1)nx n /n!+…; 1+x2 /2!+…+x2n/(2n)!+…=(ex+e-x )/2; x+x3 /3!+…+x2n+1/(2n+1)!+…=(ex -e -x )/2; 3. recurrence relation Using Characteristic roots to solve recurrence relations Using Generating functions to solve recurrence relations example,exercise

YIlI Graphs 1. Graph terminology The degree of a vertex, 8(G),A(G), Theorem 5.1 5.2 k-regular, spanning subgraph, induced subgraph by v∈V the complement of a graph g, connected, connected components strongly connected, connected directed weakly connected
III Graphs 1. Graph terminology The degree of a vertex,(G), (G), Theorem 5.1 5.2 k-regular, spanning subgraph, induced subgraph by V'V the complement of a graph G, connected, connected components strongly connected, connected directed weakly connected

2. connected. Euler and hamilton paths e Prove g is connected (1)there is a path from any vertex to any other vertex .(2 )Suppose G is disconnected +1) connected components(k>1) 2There exist u, v such that is no path between uv
2. connected, Euler and Hamilton paths Prove: G is connected (1)there is a path from any vertex to any other vertex (2)Suppose G is disconnected 1) k connected components(k>1) 2)There exist u,v such that is no path between u,v

Prove that the complement of a disconnected graph is connected. Let g be a simple graph with n vertices. Show that ifo(G)>n/2-1, then g is connected t Show that a simple graph g with an vertices is connected if it has more than (n-1)(n-2)/2 edges. TheoremS, examples, and exercises
Prove that the complement of a disconnected graph is connected. Let G be a simple graph with n vertices. Show that ifδ(G) >[n/2]-1, then G is connected. Show that a simple graph G with an vertices is connected if it has more than (n-1)(n-2)/2 edges. Theorems, examples, and exercises
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)29/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)28/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)27/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)26/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)25/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)24/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)23/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)22/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)21/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)20/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)19/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)18/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)16/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)17/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)15/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)14/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)13/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)12/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)11/30.ppt
- 复旦大学:《离散数学 Discrete Mathematics(上)》英文课件(赵一鸣)10/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)01/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)02/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)03/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)04/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)05/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)06/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)07/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)08/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)09/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)10/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)11/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)12/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)13/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)14/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)15/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)16/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)17/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)18/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)19/30.ppt
- 复旦大学:《离散数学——集合与图论》PPT课件(赵一鸣)20/30.ppt