香港大学:《计量经济学》(英文版) Chapter 11 Heteroskedasticity

CHAPTER 11 HETEROSKEDASTICITY Chapter 1l Heteroskedasticity 11.1 Whites test for heteroskedasticity For a model with het eroskedasticity E(b)=B and Var (b)=(X'XXQX(X'X) ag We may express X9X=∑ uppose that Tx1→Q, a finite and nonsingular matrix. Then XD=7可x can be estimated consistent ly by 1-∑ (Note that b 2, B even in the presence of heteroskedasticity. If there is no heteroskedasticity(of 02),n-lX'QX is consistently estimated either by 8(n-1X'X)where 2=n-1(y-Xb(y-X'b)as Vn. Thus, comparing Vn and 2(n-X'X)provides an indicator of heteroskedasticity. When there is no heteroskedas- ticity, Vn-02(n-1X'X)2,0 Otherwise, Vn-02(n-lX'X)#0
CHAPTER 11 HETEROSKEDASTICITY 1 Chapter 11 Heteroskedasticity 11.1 White’s test for heteroskedasticity For a model with heteroskedasticity, yi = X ′ iβ + εi , we have E (b) = β and V ar (b) = (X ′X) −1 X ′ΩX (X ′X) −1 where Ω = diag σ 2 1 , · · · , σ2 n . We may express X ′ΩX = n i=1 σ 2 i xix ′ i . Suppose that n −1X ′X = n −1xix ′ i → Q, a finite and nonsingular matrix. Then n −1X ′ΩX = n −1σ 2 i xix ′ i can be estimated consistently by Vˆ n = n −1n i=1 e 2 i xix ′ i where ei = yi − x ′ i b. (Note that b p→ β even in the presence of heteroskedasticity.) If there is no heteroskedasticity (σ 2 1 = · · · = σ 2 n ), n−1X′ΩX is consistently estimated either by σˆ 2 (n −1X′X) where σˆ 2 = n −1 (y − X′ b) (y − X′ b) as Vˆ n. Thus, comparing Vˆ n and σ 2 (n −1X′X) provides an indicator of heteroskedasticity. When there is no heteroskedasticity, Vˆ n − σ 2 (n −1X′X) p→ 0. Otherwise, Vˆ n − σ 2 (n −1X′X) p 0.

HAPTER 11 HETEROSKEDASTIO The test stat ist ic White suggests is WHEnd ba Bid ba E . E y, is the 1 x K(K+ 1)/2 vect or cont aining the element of the lower triangle of the matrix ayIn 亚=n 业 Under the null of no heteroskedasticity, WH→xk(K (K: no of regressors) rk 1 ha-D b,o is he vec--rized f rm-fV-a"(nxX rk 2 The limi-ing dis-ribu-i-n-fwh depends-n he number-f regress-rs in he 11.2 Lagrange multiplier test for heteroskedasticity Breusch and Pagan(1979)"A Simple Test for Het eroskedasticity and Random Coefficient Variation. Econometrica X6+ Et N didn 0.anm' d=h(zla)(the first element of Zt is one) Ho: an=.=ap=0(no heteroskedasticity The lm test is EB 6, E3 Stft
CHAPTER 11 HETEROSKEDASTICITY 2 The test statistic White suggests is WH = nD b, σˆ 2 Bˆ−1D b, σˆ 2 , where D b, σˆ 2 = n −1Ψ ′ i e 2 i − σˆ 2 Bˆ = n −1 e 2 i − σˆ 2 Ψi − Ψˆ ′ Ψi − Ψˆ Ψi is the 1 × K (K + 1) /2 vector containing the element of the lower triangle of the matrix xix ′ i , Ψ =ˆ n −1n i=1 Ψi Under the null of no heteroskedasticity, W H d→ χ 2 K(K+1)/2 (K : no of regressors). Remark 1 Note that D b, σˆ 2 is the vectorized form of Vˆ − σˆ 2 (n −1X′X). Remark 2 The limiting distribution of WH depends on the number of regressors in the model. 11.2 Lagrange multiplier test for heteroskedasticity Breusch and Pagan (1979) “A Simple Test for Heteroskedasticity and Random Coefficient Variation.” Econometrica yt = X ′ tβ + εt εt ∼ iidN 0, σ2 t σ 2 t = h (Z ′ tα) (the first element of Zt is one) H0 : α2 = · · · = αp = 0 (no heteroskedasticity) The LM test is LM = 1 2 Ztft ′ ZtZ ′ t −1 Ztft

HAPTER 11 HETEROSKEDASTICIT ty( e and d are obtained by ols. As n LM fXp Remark1~LM→- nd>pxndx-~×fum-b-malf-mhe Remark2W×mx- sp>cify x7-gx- us waria×2t-pply×LM-8 11. 3 GLS Suppose that var B OriEy oi. The GLS estimator is obt ained by regressing /voi P This gives the gls estimat or n77 2 If oy x a, we may write En y a Xv h Replacing el with ei, we have an approximate relation e y c Xv Running Ols on this equation, we can obtain deand d y a, de The feasible GLS estimator is obtained plugging d into the formula of GLs We may use other models for heteroskedasticity. Examples are
CHAPTER 11 HETEROSKEDASTICITY 3 where ft = e 2 σˆ 2 − 1. e and σˆ 2 are obtained by OLS. As n → ∞, LM d→ χ 2 p−1 . Remark 1 The LM test is independent of the functional form h (·). Remark 2 We need to specify exogenous variable Zt to apply the LM test. 11.3 GLS Suppose that V ar (εi |Xi) = σ 2 i . The GLS estimator is obtained by regressing Py = y1/ √ σ1 . . . yn/ √ σn on P x = x1/ √ σ1 . . . xn/ √ σn This gives the GLS estimator βˆ GLS = n i=1 1 σ 2 i xix ′ i −1 n i=1 1 σ 2 i xiyi . If σ 2 i = x ′ iα, we may write ε 2 i = σ 2 i + νi where νi = ε 2 i − E ε 2 i |xi . Replacing ε 2 i with e 2 i , we have an approximate relation e 2 i = x ′ iα + ν ∗ i . Running OLS on this equation, we can obtain αˆ and σˆi = x ′ iα. ˆ The feasible GLS estimator is obtained plugging σˆi into the formula of GLS. We may use other models for heteroskedasticity. Examples are: σ 2 i = (x ′ iα) 2 σ 2 i = exp (x ′ iα) . . .

CHAPTER 11 HETEROSKEDASTICITY 11. 4 Autoregressi ve conditional heteroskedasticity (ARCH) This is the ARCH (1) mode Since 0)t|)+-1) a0+a1)21(u)=0 v120)-1)=02)=1)=(ao+a1)2-1)^(ur) Thus, )t is conditionally heteroskedast ic with respect to )t-1 The unconditional variance of )t is v12()=^(()2-1)=a0+a1^02-1 +a1y12() If the unconditional variance does not change over time 业120)=亚12()+-1 Thus, the model obeys the condition of the classical linear regression model Various generalization of the ARC H (1)model is available in the literature: ARCH(P) GARCH (1,1),etc
CHAPTER 11 HETEROSKEDASTICITY 4 11.4 Autoregressive conditional heteroskedasticity (ARCH) Consider yt = β ′Xt + εt εt = ut α0 + α1ε 2 t−1 , ut ∼ iidN (0, 1) This is the ARCH (1) model. Since E (εt |εt−1) = α0 + α1ε 2 t−1E (ut) = 0, V ar (εt |εt−1) = E ε 2 t |εt−1 = α0 + α1ε 2 t−1 E (ut) 2 = α0 + α1ε 2 t−1 Thus, εt is conditionally heteroskedastic with respect to εt−1. The unconditional variance of εt is V ar (εt) = E E ε 2 t |εt−1 = α0 + α1E ε 2 t−1 = α0 + α1V ar (εt−1). If the unconditional variance does not change over time, V ar (εt) = V ar (εt−1) = α0 1 − α1 , |α| < 1. Thus, the model obeys the condition of the classical linear regression model. Various generalization of the ARCH (1) model is available in the literature: ARCH (p), GARCH (1, 1), etc
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港大学:《计量经济学》(英文版) Chapter 10 Generalized Least Squares.pdf
- 香港大学:《计量经济学》(英文版) Chapter 1 Introduction.pdf
- 中密苏里州立大学:《经济学原理——曼昆经济学原理》课程PPT教学课件(英文版)Principles of Economics(Second Edition).pdf
- 西华大学:《微观经济学》课程教学资源(试卷习题)第三章 练习题.doc
- 西华大学:《微观经济学》课程教学资源(试卷习题)第二章 练习题.doc
- 西华大学:《微观经济学》课程教学资源(试卷习题)第一章 练习题.doc
- 西华大学:《微观经济学》课程教学资源(试卷习题)模拟试题六.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第六章 要素价格与收入分配理论——分配理论(6.3)社会分配平等程度与度量劳伦斯曲线.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第六章 要素价格与收入分配理论——分配理论(6.2)以均衡价格理论为基础的分配理论.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第六章 要素价格与收入分配理论——分配理论(6.1)以边际生产力理论为基础的分配理论.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第五章 市场理论——厂商均衡理论(5.4)寡头垄断下的厂商均衡.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第五章 市场理论——厂商均衡理论(5.3)垄断竞争下的厂商均衡.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第五章 市场理论——厂商均衡理论(5.2)完全断下的厂商均衡.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第五章 市场理论——厂商均衡理论(5.1)完全竞争下的厂商均衡.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第四章 生产理论(4.4)生产可能性线与机会成本.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第四章 生产理论(4.3)生产要素的最住(适)组合.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第四章 生产理论(4.2)成本与收益分析.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第四章 生产理论(4.1)生产与生产的基本规律.ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第三章 消费理论——消费者行为理论(3.2)序数效用理论(无差异曲线分析).ppt
- 西华大学:《微观经济学》课程教学资源(PPT课件)第三章 消费理论——消费者行为理论(3.1)基数效用理论(边际效用理论).ppt
- 香港大学:《计量经济学》(英文版) Chapter 12 Time Series Analysis.pdf
- 香港大学:《计量经济学》(英文版) Chapter 2 The Classical Multiple Linear Regression.pdf
- 香港大学:《计量经济学》(英文版) Chapter 3 Least Squares Methods for Estimating.pdf
- 香港大学:《计量经济学》(英文版) Chapter 3-1 Least Squares Methods for Estimating.pdf
- 香港大学:《计量经济学》(英文版) Chapter 4 Finite-Sample properties of the LSE.pdf
- 香港大学:《计量经济学》(英文版) Chapter 5 Large sample properties of the LSE.pdf
- 香港大学:《计量经济学》(英文版) Chapter 6 Large Sample Inference and Prediction.pdf
- 香港大学:《计量经济学》(英文版) Chapter 7 Functional Form and Structural Change.pdf
- 香港大学:《计量经济学》(英文版) Review Problems for Midterm.pdf
- 香港大学:《计量经济学》(英文版) Review Conditional pdf.pdf
- 香港大学:《计量经济学》(英文版) Expectations and Conditional Expectations.pdf
- 香港大学:《计量经济学》(英文版) Law of Iterated Expectations.pdf
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter eleven Asset(资产)Markets.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter twelve Uncertainty.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter Thirteen Risky Assets.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter One The Market - Appreciating Economic Modeling.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter Ten Intertemporal Choice.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter Fourteen Consumer’s Surplus.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter Fifteen Market Demand.ppt
- 《经济类课件汇集》教学资源(PPT讲稿,英文版)Chapter Sixteen Equilibrium.ppt