中国高校课件下载中心 》 教学资源 》 大学文库

中国地质大学:《构造地质学》课程PPT教学课件(英文版)Lecture 20 REVIEW OF STRESS

文档信息
资源类别:文库
文档格式:PPT
文档页数:19
文件大小:569KB
团购合买:点击进入团购
内容简介
(A)General triaxial stress ellipsoid in perspective view. (B)Views normal to each of the principal planes of the ellipsoid. (After W.D. Means,1976)
刷新页面文档预览

REVIEW OF STRESS

REVIEW OF STRESS

x y yx xy yZ Infinitesimal cube ↓σ Stress components in three dimensions

Stress components in three dimensions Infinitesimal cube xy =yx yz =zy zx =xz

(A) (A) General triaxial stress ellipsoid in perspective view.(B)Views normal to each of the principal planes of the ellipsoid. (After W.D. Means, 1976)

(A) General triaxial stress ellipsoid in perspective view.(B)Views normal to each of the principal planes of the ellipsoid. (After W.D. Means,1976) 1 1 1 2  2 3 3 3 2 (A) (B) 1> 2 > 3

STRESSES (2)

STRESSES (2)

Classes of Stress states

Classes of Stress States

Triaxial compressive stresses O10)23)0 o2 Biaxial compressive stresses G1G1O2O3=0

1 2 0 1 2 3   = 3 1 2 0 1 2 3    Triaxial compressive stresses Biaxial compressive stresses

Uniaxial stresses O1O2= 0 O2 Hydrostatic stresses O1=02=6

1  =1  =2 0 3   2 3 1  1  =2 0 3  = 1 Hydrostatic stresses Uniaxial stresses

O3 Plane stresses G112=0σ3 Pure shear stresses 1O1=O3:O2=0

3 1 1 2 3  = 0 3 1 1 3 2 Plane stresses Pure shear stresses

Stresses acting on a given plane 2 Equilibrium equations ∑Fa=0 ∑F;=0 1 Ae coSt coST o. w inosine=0 0 0 0-01 Ae coSe Sine+ o,A w sinecose=o 0 Ae cosO e Ao sine 2 A triangle element

Stresses acting on a given plane 1 2  t   1 2 A A cos A sin     A triangle element Equilibrium equations: F = 0 Ft = 0 -A + 1 A cos cos+ 2 A* *sinsin=0  A -1 A cos sin+ 2A * *sincos=0

σ=1cos2(0)+o2sin2(0) t=0 cossing o sinecose (2) Using the triangle formulae: c0s26=(1/2)(1+cos20) sin26=(1/2(1-cos20) We can rewrite equation(1)as follows: σ=12(σ1+∞2)+12(01-o2)c0s26 (3) Introduce the triangle formula sin20 =2cosesine into equation(2), we can obtain: T=1/2(01-2)sin26 (4) t reach a maximum value when 0 is 45 degrees and that is T=1/2(o1-02) (5)

 = 1 cos 2 ()+ 2 sin 2 () (1)  = 1 cossin - 2 sincos (2) Mohr’s Circle Stress Equations Using the triangle formulae: cos2  = (1/2)(1+cos2 ) sin 2 = (1/2)(1- cos2 ) We can rewrite equation (1) as follows:  = 1/2 (1 + 2 ) + 1/2 (1 - 2 ) cos2 (3) Introduce the triangle formula sin2 =2cossin into equation (2), we can obtain:  = 1/2 (1 - 2 ) sin2 (4)  reach a maximum value when  is 45 degrees and that is max= 1/2 (1 - 2 ) (5)

共19页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档