《遗传学》课程教学资源:英文版 Bacterial Genetics

Bacterial Genetics Key Requirements 1. Understand how genetic mapping is achieved in bacteria: Co-transformation F factor hfr strain co-transduction and some understanding of phage genetics 2. Read the textbook and do the problem set at the back
Bacterial Genetics Key Requirements: 1. Understand how genetic mapping is achieved in bacteria: Co-transformation, F factor, Hfr strain, co-transduction and some understanding of phage genetics 2. Read the textbook and do the problem set at the back

General Introduction about e coli E coli is widely used in genetic studies. E coli grows quickly, grows on a simple media and there are many auxotrophic mutant strains Many different bacterial mutants types have been identified Mutants unable to utilize a nutrient for growth: gal-, lac-, xyl-,etc Mutants dependent upon a nutrient for growth- an auxotroph: ala-, phe-, leu-, etc Mutants sensitive or resistant to a drug or phage: tetR Conditional mutations: grow only under certain conditions dnaAts
General Introduction about E.coli • E. coli is widely used in genetic studies. • E. coli grows quickly, grows on a simple media and there are many auxotrophic mutant strains. • Many different bacterial mutants types have been identified: • Mutants unable to utilize a nutrient for growth: gal-, lac-, xyl-, etc • Mutants dependent upon a nutrient for growth--- an auxotroph: ala-, phe-, leu- , etc • Mutants sensitive or resistant to a drug or phage: tetR • Conditional mutations: grow only under certain conditions dnaAts

An experiment to isolate auxotroph Penicillin enrichment Resuspend in medium minus Auxotr。phs one nutrient Transfer to Centrifuge plus penicillin rich medium Replica plate。n Cell pellet medium minus nutrient Mutagenized Prototrophs gr。w culture in rich and 99% are killed by medium c。 ntains penicillin Auxotrophs auxotrophic and cannot grow and are prototrophic cells not killed. Culture is Only prototrophs grow enriched for Locate auxotrophic auX。 trophs. colonies on original late
An experiment to isolate auxotroph

The bacterial chromosome and plasmids Most or all bacteria possess only one chromosome, and it is circular The size of bacterial chromosomes vary from 1.5 mega-base pairs to 8 mega-base pairs. E coli is 4.8 mega-base pairs(4, 800,000). Several have had their DNA sequence determined. Nearly all bacteria possess plasmids Plasmids are small (usually between 2,000 to 100,000 bp) extrachromosomal circular dNAs that replicates autonomously from the chromosome) Many plasmids possess specialized genes: antibiotic resistance, ability to degrade specialized chemicals, or genes for specific purposes: nitrogen fixation, toxin production, etc. Some possess genes for transfer to other bacteria
The bacterial chromosome and plasmids • Most or all bacteria possess only one chromosome, and it is circular • The size of bacterial chromosomes vary from 1.5 mega-base pairs to 8 mega-base pairs. E. coli is 4.8 mega-base pairs (4,800,000). Several have had their DNA sequence determined. • Nearly all bacteria possess plasmids. • Plasmids are small (usually between 2,000 to 100,000 bp) extrachromosomal circular DNAs that replicates autonomously from the chromosome) • Many plasmids possess specialized genes: antibiotic resistance, ability to degrade specialized chemicals, or genes for specific purposes: nitrogen fixation, toxin production, etc. • Some possess genes for transfer to other bacteria

Bacterial Plasmid (b) Tn5 n3 1S1 Kan / IS1 Tn4 Resistance-determinant -- segment IS2
Bacterial Plasmid

Three kinds of genetic transfer occur in bacteria Transformation: donor cell releases dNa by lysi S and it is taken up by the recipient cell Conjugation: physical contact between two bacterial cells and transfer of dna Transduction: bacterial virus(phage) transfers the DNa from donor cell to recipient cell
Three kinds of genetic transfer occur in bacteria • Transformation: donor cell releases DNA by lysis and it is taken up by the recipient cell • Conjugation: physical contact between two bacterial cells and transfer of DNA • Transduction: bacterial virus (phage) transfers the DNA from donor cell to recipient cell

Gene Transfer in Bacteria Gene transfer in bacteria Transformation Conjugation Transducti。n ce∥?2 Recipi Lysis of Don。rcel Donor ce∥ Recipient cell don。rcel releases DNA into medium. Donor cell Donor dNa is packaged plasmid in bacteriophage OO C Recipient Donor dna is Lysis of don。 or cell. cell transferred directly to Donor dNa is packaged recipient through in released bacteriophage connecting tube Contact and transfer are promoted by a specialized plasmid Donor dna is in the donor cell Donor dNa is transferred taken up by recipient. when phage particle infects recipient cell
Gene Transfer in Bacteria

Bacterial transformation Transformation involves uptake of DNA, followed by either recombination of the dna with the host chromosome or self-replication of DNA (plasmids). Genes that are close together on DNA can cotransform That is, alleles of both genes can be inserted on the same piece of DNA. Gene order can be determined by cotransformation
Bacterial transformation • Transformation involves uptake of DNA, followed by either recombination of the DNA with the host chromosome or self-replication of DNA (plasmids). • Genes that are close together on DNA can cotransform. That is, alleles of both genes can be inserted on the same piece of DNA. • Gene order can be determined by cotransformation

Natural transformation 力isB hisB trpc trpc Wildtype donor cell trpc/hisB double auxotrophs Recipient cell (b) Competent cell recipient Donor dna Bacterial chromosome (hisB", trpC) Receptor site 1. Donor DNa binds to recipient cell at receptor site 力isB trpc+
Natural Transformation

2. One donor strand is degraded. Admitted donor strand pairs witi homologous region of bacterial chromosome. Replaced strand is degraded One strand degraded 3. Donor strand is integrated into bacterial chromosome hisB trpC 4. After cell replication, one cell is identical to original recipient the other carries the mutant gene. hisB trpc Transformed cell Figure 13.10 Natural transformation in B. subtilis
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 徐州工程学院:《植物生物学》课程PPT教学课件(讲稿)第二章 植物体的形态结构和发育.ppt
- 徐州工程学院:《植物生物学》课程PPT教学课件(讲稿)第十七章 植物资源的开发利用.ppt
- 徐州工程学院:《植物生物学》课程PPT教学课件(讲稿)第十六章 植物与环境.ppt
- 徐州工程学院:《植物生物学》课程PPT教学课件(讲稿)第十五章 菌类.ppt
- 徐州工程学院:《植物生物学》课程PPT教学课件(讲稿)第十四章 植物的进化和系统发育.ppt
- 《动物学》第一章 绪论.doc
- 《动物学》第十四 章脊索动物门.doc
- 北京大学:《细胞生物学 Cell Science》课程教学资源(PPT课件讲稿)The movement of substances across cel membranes.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第五章 遗传的基本定律及其扩展.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第一章 绪论(主讲教师:王翀).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第四章 遗传信息的改变.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第十章 动物基因工程.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第三章 遗传信息的传递.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第七章 数量遗传学基础.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第六章 群体遗传学基础.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第九章 非孟德尔遗传.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第二章 遗传的物质基础.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第八章 动物基因组学基础.ppt
- 《动物生物学》课程教学资源:第十二章(12-4)扁形动物.ppt
- 《动物生物学》课程教学资源:第十一章(11-3)腔肠动抛门.ppt
- 《遗传学》课程教学资源:英文版 F and partial diploids.ppt
- 《遗传学》课程教学资源:英文版 Chromosomal structures.ppt
- 《遗传学》课程教学资源:英文版 About the final.ppt
- 《食用菌制种技术》第四章 食用菌菌种的生产.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第一章 植物细胞和组织.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第十章 植物的成熟和衰老.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第十一章 植物的环境生理与抗逆栽培.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第二章 植物的水分代谢.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第三章 植物的矿质营养.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第四章 植物的光合作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第五章 植物的呼吸作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第六章 植物体内有机物的运输与分配.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第七章 植物生长物质.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第八章 植物的生长和运动.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第九章 植物的成花与花期调.ppt
- 郑州轻工业大学:《微生物学》课程教学资源(教案讲义)微生物学教案(共九章,任课教师:卫军).doc
- 郑州轻工业大学:《微生物学》课程教学资源(大纲讲义)微生物学教学大纲.doc
- 郑州轻工业大学:《微生物学》课程教学资源(大纲讲义)微生物学实验大纲.doc
- 郑州轻工业大学:《微生物学》课程教学资源(试卷习题)试题库试题.doc
- 《遗传学》课程教学资源(书籍文献)遗传学课程PDF电子书(共十二章).pdf