《金融期货与期权》(英文版) Chapter 18 Numerical Procedures

18.1 Numerical Procedures Chapter 18 Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.1 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Numerical Procedures Chapter 18

18.2 Binomial trees Binomial trees are frequently used to approximate the movements in the price of a stock or other asset In each small interval of time the stock price is assumed to move up by a proportional amount u or to move down by a proportional amount d Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.2 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Binomial Trees • Binomial trees are frequently used to approximate the movements in the price of a stock or other asset • In each small interval of time the stock price is assumed to move up by a proportional amount u or to move down by a proportional amount d

18.3 Movements in time。t (Figure 18.1) su Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.3 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Movements in Time dt (Figure 18.1) Su Sd S

18.4 1. Tree Parameters for a Nondividend paving stock o We choose the tree parameters p, u, and d so that the tree gives correct values for the mean standard deviation of the stock price changes in a risk-neutral world erot= pu+(1-pd 2t=p2+(1-p)d2-[pu+(1-p)d]2 a further condition often imposed isu=1/d Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.4 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull 1. Tree Parameters for a Nondividend Paying Stock • We choose the tree parameters p, u, and d so that the tree gives correct values for the mean & standard deviation of the stock price changes in a risk-neutral world e r dt = pu + (1– p )d s 2dt = pu 2 + (1– p )d 2 – [pu + (1– p )d ] 2 • A further condition often imposed is u = 1/ d

18.5 2. Tree Parameters for a Nondividend paying stock (Equations 18.4 to 18.7) When St is small, a solution to the equations is st G√St r ot Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.5 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull 2. Tree Parameters for a Nondividend Paying Stock (Equations 18.4 to 18.7) When dt is small, a solution to the equations is r t t t a e u d a d p d e u e d −s d s d = − − = = =

18.6 The Complete Tree (Figure 18.2) Sod Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.6 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull The Complete Tree (Figure 18.2) S0 S0u S0d S0 S0 S0u 2 S0d 2 S0u 2 S0u 3 S0u 4 S0d 2 S0u S0d S0d 4 S0d 3

18.7 Backwards induction We know the value of the option at the final nodes We work back through the tree using risk-neutral valuation to calculate the value of the option at each node, testing for early exercise when appropriate Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.7 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Backwards Induction • We know the value of the option at the final nodes • We work back through the tree using risk-neutral valuation to calculate the value of the option at each node, testing for early exercise when appropriate

188 Example: Put Option S0=50;X=50;r=10%;σ=40%; T=5 months =04167 δt=1 month=00833 The parameters imply ll=1.1224:d=0.8909 a=1.0084;p=0.5076 Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.8 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Example: Put Option S0 = 50; X = 50; r =10%; s = 40%; T = 5 months = 0.4167; dt = 1 month = 0.0833 The parameters imply u = 1.1224; d = 0.8909; a = 1.0084; p = 0.5076

18.9 Example(continued) igure 18.3 8907 9.35 70.70 70.70 0.00 0.00 064 56.1 56.1 56.1 2.16 1.30 0.00 50.00 50.00 50.00 449 3.77 266 44.55 44.55 44.55 6.96 6.38 5.45 3969 39.69 10.36 10.31 35.36 35.36 14.64 14.64 3150 1850 28.07 21.93 Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.9 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Example (continued) Figure 18.3 89.07 0.00 79.35 0.00 70.70 70.70 0.00 0.00 62.99 62.99 0.64 0.00 56.12 56.12 56.12 2.16 1.30 0.00 50.00 50.00 50.00 4.49 3.77 2.66 44.55 44.55 44.55 6.96 6.38 5.45 39.69 39.69 10.36 10.31 35.36 35.36 14.64 14.64 31.50 18.50 28.07 21.93

18.10 Calculation of delta Delta is calculated from the nodes at time st 2.16-6.96 △ 0.41 56.12-44.55 Options, Futures, and Other Derivatives, 5th edition C 2002 by John C Hull
18.10 Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull Calculation of Delta Delta is calculated from the nodes at time dt 0.41 56.12 44.55 2.16 6.96 = − − − =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《金融期货与期权》(英文版) Chapter 17 Estimating Volatilities and Correlations.ppt
- 《金融期货与期权》(英文版) Chapter 16 Value at Risk.ppt
- 《金融期货与期权》(英文版) Chapter 15 Volatility smiles.ppt
- 《金融期货与期权》(英文版) Chapter 14 The greek letters.ppt
- 《金融期货与期权》(英文版) Chapter 13 Stock Indices, Currencies, and Futures.ppt
- 《金融期货与期权》(英文版) Chapter 12 The blackscholes Model.ppt
- 《金融期货与期权》(英文版) Chapter 11 Model of the Behavior of stock Prices.ppt
- 《金融期货与期权》(英文版) Chapter 10 Introduction to Binomial trees.ppt
- 《金融期货与期权》(英文版) Chapter 9 Trading Strategies Involving Options.ppt
- 《金融期货与期权》(英文版) Chapter 8 Properties of Stock Option Prices.ppt
- 《金融期货与期权》(英文版) Chapter 7 Mechanics of Options markets.ppt
- 《金融期货与期权》(英文版) Chapter 6 Options Futures, and Other Derivatives.ppt
- 《金融期货与期权》(英文版) Chapter 5 Interest Rate Markets.ppt
- 《金融期货与期权》(英文版) Chapter 4 Hedging Strategies Using Futures.ppt
- 《金融期货与期权》(英文版) Chapter 3 Determination of Forward and Futures Prices.ppt
- 《金融期货与期权》(英文版) Chapter 2 Mechanics of futures Markets.ppt
- 《金融期货与期权》(英文版) Chapter 1 The nature of derivatives.ppt
- 《金融期货与期权》(英文版) Chapter 30 HullOFOD5Ebw.ppt
- 《国际经济合作》课程教学资源(电子课件)第五章 国际工程承包 第三节 国际工程承包合同 第四节 国际工程承包投标.ppt
- 《国际经济合作》课程教学资源(电子课件)第九章 BOT项目.ppt
- 《金融期货与期权》(英文版) Chapter 19 Exotic Options.ppt
- 《金融期货与期权》(英文版) Chapter 20 More on models and Numerical procedures.ppt
- 《金融期货与期权》(英文版) Chapter 21 Martingales and Measures.ppt
- 《金融期货与期权》(英文版) Chapter 22 Interest Rate derivatives The standard market models.ppt
- 《金融期货与期权》(英文版) Chapter 23 Interest Rate derivatives Models of the short rate.ppt
- 《金融期货与期权》(英文版) Chapter 24 Interest Rate derivatives More advanced models.ppt
- 《金融期货与期权》(英文版)Chapter 25 Swaps revisited.ppt
- 《金融期货与期权》(英文版)Chapter 26 Credit risk.ppt
- 《金融期货与期权》(英文版) Chapter 27 Credit derivatives.ppt
- 《金融期货与期权》(英文版) Chapter 28 Real options.ppt
- 《金融期货与期权》(英文版)Chapter 29 Insurance, Weather, and Energy derivatives.ppt
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)目录(张红伟).pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 9 Monetary Theory.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 8 Monetary Policy.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 7 The Central Banking.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 5 Money and Capital Markets.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 4 Interest Rate.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 2 The Role of Money in the Macroeconomy.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)Chapter 1 Introducing Money, Banking and Financial Markets.pdf
- 四川大学:《货币银行学》课程教学资源(课件讲义,双语版)第八章 通货膨胀与通货紧缩.pdf