《数值传热学》研究生课程教学资源(课件讲稿)Chapter 7 Mathematical and Physical Characteristics of Discretized Equations(2/2,7.3-7.5)

热流科学与工程西步文源大学G教育部重点实验室Numerical HeatTransfer数值传热学)Chapter7MathematicalandPhysical CharacteristicsofDiscretizedEguations(Chapter3ofTextbook)QInstructorTao,Wen-QuanKeyLaboratoryofThermo-FluidScience&EngineeringInt.JointResearchLaboratoryofThermalScience&EngineeringXi'an Jiaotong UniversityInnovativeHarborofWestChina,Xian2022-Dec.-01CFD-NHT-EHTΦ1/41CENTER
1/41 Instructor Tao, Wen-Quan Key Laboratory of Thermo-Fluid Science & Engineering Int. Joint Research Laboratory of Thermal Science & Engineering Xi’an Jiaotong University Innovative Harbor of West China, Xian 2022-Dec.-01 Numerical Heat Transfer (数值传热学) Chapter 7 Mathematical and Physical Characteristics of Discretized Equations (Chapter 3 of Textbook)

热流科学与工程西步文源大堂G教育部重点实验室Contents7.1 Consistence,Convergence and Stability ofDiscretized Equations7.2von Neumann Method forAnalysingStabilityof Initial Problems7.3Conservationof Discretized Equations7.4TransportivePropertyofDiscretizedEquations7.5Sign-preservationPrincipleforAnalyzingConvectiveStabilityΦCFD-NHT-EHT2/41CENTER
2/41 7.1 Consistence, Convergence and Stability of Discretized Equations 7.3 Conservation of Discretized Equations Contents 7.4 Transportive Property of Discretized Equations 7.5 Sign-preservation Principle for Analyzing Convective Stability 7.2 von Neumann Method for Analysing Stability of Initial Problems

热流科学与工程西步文源大堂E教育部重点实验室7.3 Conservation of Discretized Equations7.3.1 Definition and analyzing model7.3.2 Direct summation method7.3.3 Conditions for guaranteeing conservationofdiscretizedequations7.3.4 Discussion-expected but not necessary(期待而非必须)ΦCFD-NHT-EHT3/41CENTER
3/41 7.3 Conservation of Discretized Equations 7.3.1 Definition and analyzing model 7.3.2 Direct summation method 7.3.3 Conditions for guaranteeing conservation of discretized equations 7.3.4 Discussion-expected but not necessary (期待而非必须)

热流科学与工程西步文源大学E教育部重点实验室7.3ConservationofDiscretizedEquations7.3.1 Definition and analyzing model1. DefinitionIf the summation of a certain number of discretizedequationsoverafinitevolume(有限大小体积)satisfiesconservationrequirementthesediscretizedeguationsaresaidtopossessconservation(离散方程具有守恒性)2.Analyzing model---advection equationIt is easy to show that CD of diffusion term possessesconservation.Discussion is onlyperformed fortheeguationwhich only has transient term and convective term(advectionequation,平流方程)ΦHFO-NHTCE4/41CENTER
4/41 7.3 Conservation of Discretized Equations 7.3.1 Definition and analyzing model 1. Definition 2. Analyzing model-advection equation It is easy to show that CD of diffusion term possesses conservation. Discussion is only performed for the equation which only has transient term and convective term (advection equation, 平流方程 ). If the summation of a certain number of discretized equations over a finite volume (有限大小体积)satisfies conservation requirement , these discretized equations are said to possess conservation (离散方程具有守恒性)

热流科学与工程西步文源大堂E教育部重点实验室ada(ud)0(Conservative)Advectionataxequationadad0(Non-conservative)uatax7.3.2Directsummationmethod(直接求和法)Summing up FTCS scheme of advection eg. ofconservative form over the region of [l, l, J :n+1 --d"__uidi+-u-d-Time level of the2Axspatial termsAtare not showninout31211ArCFD-NHT-EHTΦ5/41CENTER
5/41 ( ) 0 u t x (Conservative) u 0 t x (Non-conservative) 7.3.2 Direct summation method (直接求和法) Summing up FTCS scheme of advection eq. of conservative form over the region of [ , ] l l 1 2 : 1 1 1 1 1 2 n n i i i i i i u u t x Time level of the spatial terms are not shown Advection equation

热流科学与工程西步文源大堂G教育部重点实验室12 (up)i+1 -(up),-1-dnui+di+1 -u-id-12>2△x2△x△t11I.12- (up)i+1 -(up)i-1n+l(dr-d")Ax = -△t 一2Increment(增值) of Φ within t and [,l2]Is it equal to the net amount of @ entering the spaceregion by convection within the same time period?Analyzing should be made for the right hand termsof the equation to see whether this is true: (up)i+1 -(up)i-1t>Z[(up);- -(up)]2211ΦCFD-NHT-EHT6/41CENTER
6/41 1 2 1 2 1 1 1 1 1 2 I n n i i I I i i i i I t u u x 2 2 1 1 1 1 1 ( ) ( ) ( ) 2 I I n n i i i i I I u u x t 2 2 1 1 1 1 1 1 ( ) ( ) [( ) ( ) ] 2 2 I I i i i i I I u u t t u u Analyzing should be made for the right hand terms of the equation to see whether this is true: 2 1 1 1 ( ) ( ) 2 I i i I u u x Is it equal to the net amount of entering the space region by convection within the same time period? Increment(增值) of within and 1 2 t [ , ] l l

热流科学与工程西步文源大堂G教育部重点实验室12directly summing up: forZ[(ug)-- -(up);]For the termthe left end, we have:1i=I(ud)i-1udI,+1(ud),iudi=I, +1(ub01,+3i=I +2udi=I, +3+4i=I +410otin(up),- +(ud)n13AXCED-NHT-EHTG49/4112CENTER
1 i I 1 1 ( )I u 1 1 ( )I u 1 i I 1 1 ( )I u 1 2 ( )I u 1 i I 2 1 1 ( )I u 1 3 ( )I u 1 i I 3 1 2 ( )I u 1 4 ( )I u 1 i I 4 1 3 ( )I u . . . . directly summing up: for the left end, we have: 1 1 1 ) ( ) I I (u u 2 1 For the term [( ) ( ) ] 1 1 I i i I u u 49/41

热流科学与工程西步文源大堂G教育部重点实验室OutinFor the right end:r121l1Ax)12ud)-i=I, -3-2(ud)oi=I,-2-3I-(up)i=l, -10i=I2(ud) 1,+l10[(ud), +(u)1,+1]12△tThen:[(up)i-- -(ud)i+]2/△t([(up)r- +(up), ]-[(up), +(up)r+)2Left end of domainRight end of domainCFD-NHT-EHTG8/41CENTER
8/41 2 i I 3 2 4 ( )I u 2 2 ( )I u 2 i I 2 2 3 ( )I u 2 1 ( )I u 2 2 ( )I 2 u i I 1 2 ( )I u 2 i I 2 1 ( )I u 2 1 ( )I u 2 1 1 1 [( ) ( ) ] 2 I i i I t u u 1 1 2 2 1 1 {[( ) ( ) ] [( ) ( ) ]} 2 I I I I t u u u u For the right end: . . Left end of domain Right end of domain 2 2 1 [( ) ( ) ] I I Then: u u

热流科学与工程西步文源大堂E教育部重点实验室AtFurther:[(up)-1 +(up), ]-[(up)r2 +(up)1til) =2ud)CD-uniform grid(up)12 +(up)1+1+uAt2outinTTI-1-1LAr2= △t(Φ flowin - Φ flowout)Thus the central difference discretization of theconvective term possesses conservative featureCFD-NHT-EHTΦ9/41CENTER
9/41 1 1 2 1 2 1 {[( ) ( ) ] [( ) ( ) ]} 2 I I I I t u u u u 1 1 2 1 2 1 ( ) ( ) ( ) ( ) {[ ] [ ]} 2 2 I I I I u u u u t t flowin flowout ( ) CD-uniform grid Thus the central difference discretization of the convective term possesses conservative feature. I1 -1 I2+1 Further:

热流科学与工程西步文源大堂G教育部重点实验室7.3.3 Conditions forguaranteeing conservation1.Governing equation should be conservativead.od0For non-conservativeform:-11atOxΦi+1 - Φi-1@Its FTCS scheme is-u△t2△xBy direct summation, the above results do not possessconservation because of no cancellation (抵消) can be madefor the product terms. Only when u and have the samesubscript , the cancellation of inner terms can be done2.Dependent variable and its 1st derivative arecontinuous at interfaceΦCFD-NHT-EHT10/41CENTER
10/41 7.3.3 Conditions for guaranteeing conservation 1.Governing equation should be conservative u 0 t x For non-conservative form: 1 1 1 2 n n i i i i i u t x Its FTCS scheme is 2. Dependent variable and its 1st derivative are continuous at interface By direct summation, the above results do not possess conservation because of no cancellation (抵消) can be made for the product terms. Only when have the same subscript , the cancellation of inner terms can be done. u and
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 8 Numerical Simulation for Turbulent Flow and Heat Transfer.pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 6 Primitive Variable Methods for Elliptic Flow and Heat Transfer(2/3,6.4-6.6).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 7 Mathematical and Physical Characteristics of Discretized Equations(1/2,7.1-7.2).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 6 Primitive Variable Methods for Elliptic Flow and Heat Transfer(3/3,6.7-6.8).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 5 Solution Methods for Algebraic Equations.pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 6 Primitive Variable Methods for Elliptic Flow and Heat Transfer(1/3,6.1-6.3).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 4 Discretized Schemes of Diffusion and Convection Equation(1/2,4.1-4.4).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 4 Discretized Schemes of Diffusion and Convection Equation(2/2,4.5-4.7).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 3 Numerical Methods for Solving Diffusion Equation and their Applications(2/2,3.4-3.6).pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 2 Discretization of Computational Domain and Governing Equations.pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 1 Introduction Numerical Heat Transfer.pdf
- 《数值传热学》研究生课程教学资源(课件讲稿)Chapter 3 Numerical Methods for Solving Diffusion Equation and their Applications(1/2,3.1-3.3).pdf
- 《数值传热学》研究生课程教学资源(教案)流动传热问题数值仿真多层次案例.pdf
- 《高等工程热力学》研究生课程教学资源(课件讲稿,完整合并版,共八讲,主讲人:何茂刚).pdf
- 《高等工程热力学》研究生课程教学资源(教案)能量系统的㶲分析方法——物理㶲教学设计.pdf
- 中国石油大学(华东):地球科学与技术学院油气地质与勘探实验教学中心实验教学大纲.pdf
- 山东农业大学:机械工程实验教学中心《热工基础与内燃机原理》课程实验指导.pdf
- 广东科技学院:机电工程学院新能源汽车工程专业各课程教学大纲汇编(2024版).pdf
- 《船舶柴油机》课程教学资源(PPT课件)Chapter 10 测量与监控 10.1 示功图的测录 10.2 柴油机运转参数和性能参数的测量 10.3 柴油机的监控.ppt
- 《船舶柴油机》课程教学资源(PPT课件)Chapter 10 测量与监控 10.3 柴油机的监控 Monitoring and Diagnose of Diesel Engine.ppt
- 《制冷低温技术最新进展》课程教学课件(讲稿)低温气体液化与分离技术.pdf
- 《燃烧科学与技术的近代进展》课程教学课件(讲稿)二氧化碳捕集利用与封存(CO2 Capture Utilization and Storage, CCUS)技术.pptx
- 《两相与多相流动力学》课程教学课件(讲稿)两相与多相流动力学界面现象.pdf
- 《两相与多相流动力学》课程教学课件(讲稿)数理模型及数值模拟.pdf
- 《新型太阳电池材料与器件》课程教学资源(教案讲义,共八章).pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务5 变压器保护.pdf
- 《电气控制与PLC》课程教学标准(适用专业:发电厂及电力系统).pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务3 线路电流保护.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目四 二次系统的调试与运行维护.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务2 高压断路器控制回路.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务1 电气主接线方案的设计.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务3 短路故障和短路电流计算.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)0 绪论(热力学基础 Foundation of Thermodynamics).ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)1 基本概念 Basic Concepts of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)2 热力学定律 First Law of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)3 气体与蒸汽的热力性质 Thermodynamic Property of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)4 气体与蒸汽的热力过程 Thermodynamic Process of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)5 火用分析基础 Exergy.ppt
